
FontParts Documentation
Release 0.1

Dr. Rob O. Fab

Dec 09, 2022

Type Designers

1 Getting Started 1

2 Object Reference 3
2.1 Objects . 3
2.2 Common Value Types . 81
2.3 fontParts.world . 82

3 Developers 87
3.1 Implementing FontParts . 87
3.2 Developing FontParts . 122

Python Module Index 123

Index 125

i

ii

CHAPTER 1

Getting Started

These need to be ported and updated from RoboFab’s documentation.

For a quick start, here’s the sample code from the introduction ported to fontparts:

from fontParts.world import OpenFont

font = OpenFont("/path/to/my/font.ufo")

for glyph in font:
glyph.leftMargin = glyph.leftMargin + 10
glyph.rightMargin = glyph.rightMargin + 10

Find more of the original samples at https://github.com/robotools/robofab/tree/master/Docs/Examples

1

https://github.com/robotools/robofab/tree/master/Docs/Examples

FontParts Documentation, Release 0.1

2 Chapter 1. Getting Started

CHAPTER 2

Object Reference

FontParts scripts are built on with objects that represent fonts, glyphs, contours and so on. The objects are obtained
through fontparts-world.

2.1 Objects

FontParts scripts are built on with objects that represent fonts, glyphs, contours and so on. The objects are obtained
through fontparts-world.

2.1.1 Font

Note: This section needs to contain the following:

• description of what this is X

• sub-object with basic usage X

• bridge to default layer for glyphs for backwards compatibility

• glyph interaction with basic usage

Description

The Font object is the central part that connects all glyphs with font information like names, key dimensions etc.

Font objects behave like dictionaries: the glyph name is the key and the returned value is a Glyph object for that
glyph. If the glyph does not exist, Font will raise an IndexError.

Font has a couple of important sub-objects which are worth checking out. The font’s kerning is stored in a Kerning
object and can be reached as an attribute at Font.kerning. Fontnames, key dimensions, flags etc are stored in a
Info object which is available through Font.info. The Font.lib is a Lib object which behaves as a dictionary.

3

FontParts Documentation, Release 0.1

Overview

Copy

BaseFont.copy Copy the font into a new font.

File Operations

BaseFont.path The path to the file this object represents.
BaseFont.save Save the font to path.
BaseFont.generate Generate the font to another format.

Sub-Objects

BaseFont.info The font’s BaseInfo object.
BaseFont.groups The font’s BaseGroups object.
BaseFont.kerning The font’s BaseKerning object.
BaseFont.features The font’s BaseFeatures object.
BaseFont.lib The font’s BaseLib object.
BaseFont.tempLib The font’s BaseLib object.

Layers

BaseFont.layers The font’s BaseLayer objects.
BaseFont.layerOrder A list of layer names indicating order of the layers in the

font.
BaseFont.defaultLayer The font’s default layer.
BaseFont.getLayer Get the BaseLayer with name.
BaseFont.newLayer Make a new layer with name and color.
BaseFont.removeLayer Remove the layer with name from the font.
BaseFont.insertLayer Insert layer into the font.

Glyphs

BaseFont.__len__ An int representing number of glyphs in the layer.
BaseFont.keys Get a list of all glyphs in the layer.
BaseFont.glyphOrder The preferred order of the glyphs in the font.
BaseFont.__iter__ Iterate through the BaseGlyph objects in the layer.
BaseFont.__contains__ Test if the layer contains a glyph with name.
BaseFont.__getitem__ Get the BaseGlyph with name from the layer.
BaseFont.newGlyph Make a new glyph with name in the layer.
BaseFont.insertGlyph Insert glyph into the layer.
BaseFont.removeGlyph Remove the glyph with name from the layer.

4 Chapter 2. Object Reference

FontParts Documentation, Release 0.1

Reference

class fontParts.base.BaseFont(pathOrObject=None, showInterface=True)
A font object. This object is almost always created with one of the font functions in fontparts-world.

When constructing a font, the object can be created in a new file, from an existing file or from a native object.
This is defined with the pathOrObjectArgument. If pathOrObject is a string, the string must represent an
existing file. If pathOrObject is an instance of the environment’s unwrapped native font object, wrap it with
FontParts. If pathOrObject is None, create a new, empty font. If showInterface is False, the font should be
created without graphical interface. The default for showInterface is True.

Copy

BaseFont.copy()
Copy the font into a new font.

>>> copiedFont = font.copy()

This will copy:

• info

• groups

• kerning

• features

• lib

• layers

• layerOrder

• defaultLayerName

• glyphOrder

• guidelines

File Operations

BaseFont.path
The path to the file this object represents.

>>> print font.path
"/path/to/my/font.ufo"

BaseFont.save(path=None, showProgress=False, formatVersion=None, fileStructure=None)
Save the font to path.

>>> font.save()
>>> font.save("/path/to/my/font-2.ufo")

If path is None, use the font’s original location. The file type must be inferred from the file extension of the
given path. If no file extension is given, the environment may fall back to the format of its choice. showProgress
indicates if a progress indicator should be displayed during the operation. Environments may or may not im-
plement this behavior. formatVersion indicates the format version that should be used for writing the given file

2.1. Objects 5

FontParts Documentation, Release 0.1

type. For example, if 2 is given for formatVersion and the file type being written if UFO, the file is to be written
in UFO 2 format. This value is not limited to UFO format versions. If no format version is given, the original
format version of the file should be preserved. If there is no original format version it is implied that the format
version is the latest version for the file type as supported by the environment. fileStructure indicates the file
structure of the written ufo. The fileStructure can either be None, ‘zip’ or ‘package’, None will use the existing
file strucure or the default one for unsaved font. ‘package’ is the default file structure and ‘zip’ will save the font
to .ufoz.

Note: Environments may define their own rules governing when a file should be saved into its original location
and when it should not. For example, a font opened from a compiled OpenType font may not be written back
into the original OpenType font.

BaseFont.close(save=False)
Close the font.

>>> font.close()

save is a boolean indicating if the font should be saved prior to closing. If save is True, the BaseFont.save
method will be called. The default is False.

BaseFont.generate(format, path=None, **environmentOptions)
Generate the font to another format.

>>> font.generate("otfcff")
>>> font.generate("otfcff", "/path/to/my/font.otf")

format defines the file format to output. Standard format identifiers can be found in BaseFont.
generateFormatToExtension:

Environments are not required to support all of these and environments may define their own format types. path
defines the location where the new file should be created. If a file already exists at that location, it will be
overwritten by the new file. If path defines a directory, the file will be output as the current file name, with the
appropriate suffix for the format, into the given directory. If no path is given, the file will be output into the
same directory as the source font with the file named with the current file name, with the appropriate suffix for
the format.

Environments may allow unique keyword arguments in this method. For example, if a tool allows decomposing
components during a generate routine it may allow this:

>>> font.generate("otfcff", "/p/f.otf", decompose=True)

Sub-Objects

BaseFont.info
The font’s BaseInfo object.

>>> font.info.familyName
"My Family"

BaseFont.groups
The font’s BaseGroups object.

>>> font.groups["myGroup"]
["A", "B", "C"]

6 Chapter 2. Object Reference

FontParts Documentation, Release 0.1

BaseFont.kerning
The font’s BaseKerning object.

>>> font.kerning["A", "B"]
-100

BaseFont.features
The font’s BaseFeatures object.

>>> font.features.text
"include(features/substitutions.fea);"

BaseFont.lib
The font’s BaseLib object.

>>> font.lib["org.robofab.hello"]
"world"

Layers

BaseFont.layers
The font’s BaseLayer objects.

>>> for layer in font.layers:
... layer.name
"My Layer 1"
"My Layer 2"

BaseFont.layerOrder
A list of layer names indicating order of the layers in the font.

>>> font.layerOrder = ["My Layer 2", "My Layer 1"]
>>> font.layerOrder
["My Layer 2", "My Layer 1"]

BaseFont.defaultLayer
The font’s default layer.

>>> layer = font.defaultLayer
>>> font.defaultLayer = otherLayer

BaseFont.getLayer(name)
Get the BaseLayer with name.

>>> layer = font.getLayer("My Layer 2")

BaseFont.newLayer(name, color=None)
Make a new layer with name and color. name must be a String and color must be a Color or None.

>>> layer = font.newLayer("My Layer 3")

The will return the newly created BaseLayer.

BaseFont.removeLayer(name)
Remove the layer with name from the font.

2.1. Objects 7

FontParts Documentation, Release 0.1

>>> font.removeLayer("My Layer 3")

BaseFont.insertLayer(layer, name=None)
Insert layer into the font.

>>> layer = font.insertLayer(otherLayer, name="layer 2")

This will not insert the layer directly. Rather, a new layer will be created and the data from layer will be copied
to to the new layer. name indicates the name that should be assigned to the layer after insertion. If name is not
given, the layer’s original name must be used. If the layer does not have a name, an error must be raised. The
data that will be inserted from layer is the same data as documented in BaseLayer.copy .

Glyphs

Interacting with glyphs at the font level is a shortcut for interacting with glyphs in the default layer.

>>> glyph = font.newGlyph("A")

Does the same thing as:

>>> glyph = font.getLayer(font.defaultLayerName).newGlyph("A")

BaseFont.__len__()
An int representing number of glyphs in the layer.

>>> len(layer)
256

BaseFont.keys()
Get a list of all glyphs in the layer.

>>> layer.keys()
["B", "C", "A"]

The order of the glyphs is undefined.

BaseFont.glyphOrder
The preferred order of the glyphs in the font.

>>> font.glyphOrder
["C", "B", "A"]
>>> font.glyphOrder = ["A", "B", "C"]

BaseFont.__iter__()
Iterate through the BaseGlyph objects in the layer.

>>> for glyph in layer:
... glyph.name
"A"
"B"
"C"

BaseFont.__contains__(name)
Test if the layer contains a glyph with name.

8 Chapter 2. Object Reference

FontParts Documentation, Release 0.1

>>> "A" in layer
True

BaseFont.__getitem__(name)
Get the BaseGlyph with name from the layer.

>>> glyph = layer["A"]

BaseFont.newGlyph(name, clear=True)
Make a new glyph with name in the layer.

>>> glyph = layer.newGlyph("A")

The newly created BaseGlyph will be returned.

If the glyph exists in the layer and clear is set to False, the existing glyph will be returned, otherwise the
default behavior is to clear the exisiting glyph.

BaseFont.insertGlyph(glyph, name=None)
Insert glyph into the layer.

>>> glyph = layer.insertGlyph(otherGlyph, name="A")

This method is deprecated. BaseFont.__setitem__ instead.

BaseFont.removeGlyph(name)
Remove the glyph with name from the layer.

>>> layer.removeGlyph("A")

This method is deprecated. BaseFont.__delitem__ instead.

Guidelines

BaseFont.guidelines
An Immutable List of font-level BaseGuideline objects.

>>> for guideline in font.guidelines:
... guideline.angle
0
45
90

BaseFont.appendGuideline(position=None, angle=None, name=None, color=None, guide-
line=None)

Append a new guideline to the font.

>>> guideline = font.appendGuideline((50, 0), 90)
>>> guideline = font.appendGuideline((0, 540), 0, name="overshoot",
>>> color=(0, 0, 0, 0.2))

position must be a Coordinate indicating the position of the guideline. angle indicates the Angle of the guideline.
name indicates the name for the guideline. This must be a String or None. color indicates the color for the
guideline. This must be a Color or None. This will return the newly created BaseGuidline object.

2.1. Objects 9

FontParts Documentation, Release 0.1

guideline may be a BaseGuideline object from which attribute values will be copied. If position,
angle, name or color are specified as arguments, those values will be used instead of the values in the given
guideline object.

BaseFont.removeGuideline(guideline)
Remove guideline from the font.

>>> font.removeGuideline(guideline)
>>> font.removeGuideline(2)

guideline can be a guideline object or an integer representing the guideline index.

BaseFont.clearGuidelines()
Clear all guidelines.

>>> font.clearGuidelines()

Interpolation

BaseFont.isCompatible(other)
Evaluate interpolation compatibility with other.

>>> compatible, report = self.isCompatible(otherFont)
>>> compatible
False
>>> report
[Fatal] Glyph: "test1" + "test2"
[Fatal] Glyph: "test1" contains 1 contours | "test2" contains 2 contours

This will return a bool indicating if the font is compatible for interpolation with other and a String of compat-
ibility notes.

BaseFont.interpolate(factor, minFont, maxFont, round=True, suppressError=True)
Interpolate all possible data in the font.

>>> font.interpolate(0.5, otherFont1, otherFont2)
>>> font.interpolate((0.5, 2.0), otherFont1, otherFont2, round=False)

The interpolation occurs on a 0 to 1.0 range where minFont is located at 0 and maxFont is located at 1.0. factor
is the interpolation value. It may be less than 0 and greater than 1.0. It may be a Integer/Float or a tuple of
two Integer/Float. If it is a tuple, the first number indicates the x factor and the second number indicates the
y factor. round indicates if the result should be rounded to integers. suppressError indicates if incompatible
data should be ignored or if an error should be raised when such incompatibilities are found.

Normalization

BaseFont.round()
Round all approriate data to integers.

>>> font.round()

This is the equivalent of calling the round method on:

• info

• kerning

10 Chapter 2. Object Reference

FontParts Documentation, Release 0.1

• the default layer

• font-level guidelines

This applies only to the default layer.

BaseFont.autoUnicodes()
Use heuristics to set Unicode values in all glyphs.

>>> font.autoUnicodes()

Environments will define their own heuristics for automatically determining values.

This applies only to the default layer.

Environment

BaseFont.naked()
Return the environment’s native object that has been wrapped by this object.

>>> loweLevelObj = obj.naked()

BaseFont.changed(*args, **kwargs)
Tell the environment that something has changed in the object. The behavior of this method will vary from
environment to environment.

>>> obj.changed()

2.1.2 Info

Description

The Info object contains all names, numbers, URLs, dimensions, values, etc. that would otherwise clutter up the
font object. You don’t have to create a Info object yourself, Font makes one when it is created.

Info validates any value set for a Info <BaseInfo> item, but does not check if the data is sane (i.e., you can set valid
but incorrect data).

Overview

BaseInfo.copy Copy this object into a new object of the same type.
BaseInfo.font The info’s parent font.
BaseInfo.interpolate Interpolate all pairs between minInfo and maxInfo.
BaseInfo.round Round the following attributes to integers:
BaseInfo.update Update this object with the values from otherInfo.
BaseInfo.naked Return the environment’s native object that has been

wrapped by this object.
BaseInfo.changed Tell the environment that something has changed in the

object.

Reference

class fontParts.base.BaseInfo(*args, **kwargs)

2.1. Objects 11

FontParts Documentation, Release 0.1

Copy

BaseInfo.copy()
Copy this object into a new object of the same type. The returned object will not have a parent object.

Parents

BaseInfo.font
The info’s parent font.

Interpolation

BaseInfo.interpolate(factor, minInfo, maxInfo, round=True, suppressError=True)
Interpolate all pairs between minInfo and maxInfo. The interpolation occurs on a 0 to 1.0 range where minInfo
is located at 0 and maxInfo is located at 1.0.

factor is the interpolation value. It may be less than 0 and greater than 1.0. It may be a number (integer, float) or
a tuple of two numbers. If it is a tuple, the first number indicates the x factor and the second number indicates
the y factor.

round indicates if the result should be rounded to integers.

suppressError indicates if incompatible data should be ignored or if an error should be raised when such incom-
patibilities are found.

Normalization

BaseInfo.round()
Round the following attributes to integers:

• unitsPerEm

• descender

• xHeight

• capHeight

• ascender

• openTypeHeadLowestRecPPEM

• openTypeHheaAscender

• openTypeHheaDescender

• openTypeHheaLineGap

• openTypeHheaCaretSlopeRise

• openTypeHheaCaretSlopeRun

• openTypeHheaCaretOffset

• openTypeOS2WidthClass

• openTypeOS2WeightClass

• openTypeOS2TypoAscender

12 Chapter 2. Object Reference

FontParts Documentation, Release 0.1

• openTypeOS2TypoDescender

• openTypeOS2TypoLineGap

• openTypeOS2WinAscent

• openTypeOS2WinDescent

• openTypeOS2SubscriptXSize

• openTypeOS2SubscriptYSize

• openTypeOS2SubscriptXOffset

• openTypeOS2SubscriptYOffset

• openTypeOS2SuperscriptXSize

• openTypeOS2SuperscriptYSize

• openTypeOS2SuperscriptXOffset

• openTypeOS2SuperscriptYOffset

• openTypeOS2StrikeoutSize

• openTypeOS2StrikeoutPosition

• openTypeVheaVertTypoAscender

• openTypeVheaVertTypoDescender

• openTypeVheaVertTypoLineGap

• openTypeVheaCaretSlopeRise

• openTypeVheaCaretSlopeRun

• openTypeVheaCaretOffset

• postscriptSlantAngle

• postscriptUnderlineThickness

• postscriptUnderlinePosition

• postscriptBlueValues

• postscriptOtherBlues

• postscriptFamilyBlues

• postscriptFamilyOtherBlues

• postscriptStemSnapH

• postscriptStemSnapV

• postscriptBlueFuzz

• postscriptBlueShift

• postscriptDefaultWidthX

• postscriptNominalWidthX

2.1. Objects 13

FontParts Documentation, Release 0.1

Update

BaseInfo.update(other)
Update this object with the values from otherInfo.

Environment

BaseInfo.naked()
Return the environment’s native object that has been wrapped by this object.

>>> loweLevelObj = obj.naked()

BaseInfo.changed(*args, **kwargs)
Tell the environment that something has changed in the object. The behavior of this method will vary from
environment to environment.

>>> obj.changed()

2.1.3 Groups

Description

Groups are collections of glyphs. Groups are used for many things, from OpenType features, kerning, or just keeping
track of a collection of related glyphs. The name of the group must be at least one character, with no limit to the
maximum length for the name, nor any limit on the characters used in a name. With the exception of the kerning
groups defined below, glyphs may be in more than one group and they may appear within the same group more than
once. Glyphs in the groups are not required to be in the font.

Groups behave like a Python dictionary. Anything you can do with a dictionary in Python, you can do with Groups.

font = CurrentFont()
for name, members in font.groups.items():

print(name)
print(members)

It is important to understand that any changes to the returned group contents will not be reflected in the groups object.
This means that the following will not update the font’s groups:

group = list(font.groups["myGroup"])
group.remove("A")

If one wants to make a change to the group contents, one should do the following instead:

group = list(font.groups["myGroup"])
group.remove("A")
font.groups["myGroup"] = group

Kerning Groups

Groups may be used as members of kerning pairs in BaseKerning. These groups are divided into two types: groups
that appear on the first side of a kerning pair and groups that appear on the second side of a kerning pair.

14 Chapter 2. Object Reference

FontParts Documentation, Release 0.1

Kerning groups must begin with standard prefixes. The prefix for groups intended for use in the first side of a kerning
pair is public.kern1.. The prefix for groups intended for use in the second side of a kerning pair is public.
kern2.. One or more characters must follow the prefix.

Kerning groups must strictly adhere to the following rules:

1. Kerning group names must begin with the appropriate prefix.

2. Only kerning groups are allowed to use the kerning group prefixes in their names.

3. Kerning groups are not required to appear in the kerning pairs.

4. Glyphs must not appear in more than one kerning group per side.

These rules come from the Unified Font Object, more information on implementation details for application developers
can be found there.

Overview

BaseGroups.copy Copy this object into a new object of the same type.
BaseGroups.font The Groups’ parent BaseFont.
BaseGroups.__contains__ Tests to see if a group name is in the Groups.
BaseGroups.__delitem__ Removes groupName from the Groups.
BaseGroups.__getitem__ Returns the contents of the named group.
BaseGroups.__iter__ Iterates through the Groups, giving the key for each it-

eration.
BaseGroups.__len__ Returns the number of groups in Groups as an int..
BaseGroups.__setitem__ Sets the groupName to the list of glyphNames.
BaseGroups.clear Removes all group information from Groups, resetting

the Groups to an empty dictionary.
BaseGroups.get Returns the contents of the named group.
BaseGroups.items Returns a list of tuple of each group name and group

members.
BaseGroups.keys Returns a list of all the group names in Groups.
BaseGroups.pop Removes the groupName from the Groups and returns

the list of group members.
BaseGroups.update Updates the Groups based on otherGroups.
BaseGroups.values Returns a list of each named group’s members.
BaseGroups.findGlyph Returns a list of the group or groups associated with

glyphName.
BaseGroups.naked Return the environment’s native object that has been

wrapped by this object.
BaseGroups.changed Tell the environment that something has changed in the

object.

Reference

class fontParts.base.BaseGroups(*args, **kwargs)
A Groups object. This object normally created as part of a BaseFont. An orphan Groups object can be created
like this:

>>> groups = RGroups()

This object behaves like a Python dictionary. Most of the dictionary functionality comes from BaseDict, look
at that object for the required environment implementation details.

2.1. Objects 15

http://unifiedfontobject.org/versions/ufo3/groups.plist/

FontParts Documentation, Release 0.1

Groups uses normalizers.normalizeGroupKey to normalize the key of the dict, and
normalizers.normalizeGroupValue to normalize the value of the dict.

Copy

BaseGroups.copy()
Copy this object into a new object of the same type. The returned object will not have a parent object.

Parents

• font The groups’ parent BaseFont.

Dictionary

BaseGroups.__contains__(groupName)
Tests to see if a group name is in the Groups. groupName will be a String. This returns a bool indicating if
the groupName is in the Groups.

>>> "myGroup" in font.groups
True

BaseGroups.__delitem__(groupName)
Removes groupName from the Groups. groupName is a String.:

>>> del font.groups["myGroup"]

BaseGroups.__getitem__(groupName)
Returns the contents of the named group. groupName is a String. The returned value will be a Immutable List
of the group contents.:

>>> font.groups["myGroup"]
("A", "B", "C")

It is important to understand that any changes to the returned group contents will not be reflected in the Groups
object. If one wants to make a change to the group contents, one should do the following:

>>> group = font.groups["myGroup"]
>>> group.remove("A")
>>> font.groups["myGroup"] = group

BaseGroups.__iter__()
Iterates through the Groups, giving the key for each iteration. The order that the Groups will iterate though is
not fixed nor is it ordered.:

>>> for groupName in font.groups:
>>> print groupName
"myGroup"
"myGroup3"
"myGroup2"

BaseGroups.__len__()
Returns the number of groups in Groups as an int.:

16 Chapter 2. Object Reference

FontParts Documentation, Release 0.1

>>> len(font.groups)
5

BaseGroups.__setitem__(groupName, glyphNames)
Sets the groupName to the list of glyphNames. groupName is the group name as a String and glyphNames is
a list of glyph names as String.

>>> font.groups["myGroup"] = ["A", "B", "C"]

BaseGroups.clear()
Removes all group information from Groups, resetting the Groups to an empty dictionary.

>>> font.groups.clear()

BaseGroups.get(groupName, default=None)
Returns the contents of the named group. groupName is a String, and the returned values will either be Im-
mutable List of group contents or None if no group was found.

>>> font.groups["myGroup"]
("A", "B", "C")

It is important to understand that any changes to the returned group contents will not be reflected in the Groups
object. If one wants to make a change to the group contents, one should do the following:

>>> group = font.groups["myGroup"]
>>> group.remove("A")
>>> font.groups["myGroup"] = group

BaseGroups.items()
Returns a list of tuple of each group name and group members. Group names are String and group members
are a Immutable List of String. The initial list will be unordered.

>>> font.groups.items()
[("myGroup", ("A", "B", "C"), ("myGroup2", ("D", "E", "F"))]

BaseGroups.keys()
Returns a list of all the group names in Groups. This list will be unordered.:

>>> font.groups.keys()
["myGroup4", "myGroup1", "myGroup5"]

BaseGroups.pop(groupName, default=None)
Removes the groupName from the Groups and returns the list of group members. If no group is found, default
is returned. groupName is a String. This must return either default or a Immutable List of glyph names as
String.

>>> font.groups.pop("myGroup")
("A", "B", "C")

BaseGroups.update(otherGroups)
Updates the Groups based on otherGroups. otherGroups* is a dict of groups information. If a group from
otherGroups is in Groups, the group members will be replaced by the group members from otherGroups. If a
group from otherGroups is not in the Groups, it is added to the Groups. If Groups contain a group name that is
not in otherGroups*, it is not changed.

2.1. Objects 17

FontParts Documentation, Release 0.1

>>> font.groups.update(newGroups)

BaseGroups.values()
Returns a list of each named group’s members. This will be a list of lists, the group members will be a
Immutable List of String. The initial list will be unordered.

>>> font.groups.items()
[("A", "B", "C"), ("D", "E", "F")]

Queries

BaseGroups.findGlyph(glyphName)
Returns a list of the group or groups associated with glyphName. glyphName will be an String. If no group
is found to contain glyphName an empty list will be returned.

>>> font.groups.findGlyph("A")
["A_accented"]

Environment

BaseGroups.naked()
Return the environment’s native object that has been wrapped by this object.

>>> loweLevelObj = obj.naked()

BaseGroups.changed(*args, **kwargs)
Tell the environment that something has changed in the object. The behavior of this method will vary from
environment to environment.

>>> obj.changed()

2.1.4 Kerning

Description

Kerning groups must begin with standard prefixes. The prefix for groups intended for use in the first side of a kerning
pair is public.kern1.. The prefix for groups intended for use in the second side of a kerning pair is public.
kern2.. One or more characters must follow the prefix.

Kerning groups must strictly adhere to the following rules:

1. Kerning group names must begin with the appropriate prefix.

2. Only kerning groups are allowed to use the kerning group prefixes in their names.

3. Kerning groups are not required to appear in the kerning pairs.

4. Glyphs must not appear in more than one kerning group per side.

These rules come from the Unified Font Object, more information on implementation details for application developers
can be found there.

18 Chapter 2. Object Reference

http://unifiedfontobject.org/versions/ufo3/groups.plist/

FontParts Documentation, Release 0.1

Overview

Copy

BaseKerning.copy Copy this object into a new object of the same type.

Parents

BaseKerning.font The Kerning’s parent BaseFont.

Dictionary

BaseKerning.__len__ Returns the number of pairs in Kerning as an int..
BaseKerning.keys Returns a list of all the pairs in Kerning.
BaseKerning.items Returns a list of tuples of each pair and value.
BaseKerning.values Returns a list of each pair’s values, the values will be

Integer/Floats.
BaseKerning.__contains__ Tests to see if a pair is in the Kerning.
BaseKerning.__setitem__ Sets the pair to the list of value.
BaseKerning.__getitem__ Returns the kerning value of the pair.
BaseKerning.get Returns the value for the kerning pair.
BaseKerning.find Returns the value for the kerning pair - even if the pair

only exists implicitly (one or both sides may be mem-
bers of a kerning group).

BaseKerning.__delitem__ Removes pair from the Kerning.
BaseKerning.pop Removes the pair from the Kerning and returns the

value as an int.
BaseKerning.__iter__ Iterates through the Kerning, giving the pair for each

iteration.
BaseKerning.update Updates the Kerning based on otherKerning.
BaseKerning.clear Removes all information from Kerning, resetting the

Kerning to an empty dictionary.

Transformations

BaseKerning.scaleBy Scales all kerning values by factor.

Interpolation

BaseKerning.interpolate Interpolates all pairs between two BaseKerning ob-
jects:

Normalization

2.1. Objects 19

FontParts Documentation, Release 0.1

BaseKerning.round Rounds the kerning values to increments of multiple,
which will be an int.

Environment

BaseKerning.naked Return the environment’s native object that has been
wrapped by this object.

BaseKerning.changed Tell the environment that something has changed in the
object.

Reference

class fontParts.base.BaseKerning(*args, **kwargs)
A Kerning object. This object normally created as part of a BaseFont. An orphan Kerning object can be
created like this:

>>> groups = RKerning()

This object behaves like a Python dictionary. Most of the dictionary functionality comes from BaseDict, look
at that object for the required environment implementation details.

Kerning uses normalizers.normalizeKerningKey to normalize the key of the dict, and
normalizers.normalizeKerningValue to normalize the the value of the dict.

Copy

BaseKerning.copy()
Copy this object into a new object of the same type. The returned object will not have a parent object.

Parents

BaseKerning.font
The Kerning’s parent BaseFont.

Dictionary

BaseKerning.__len__()
Returns the number of pairs in Kerning as an int.:

>>> len(font.kerning)
5

BaseKerning.keys()
Returns a list of all the pairs in Kerning. This list will be unordered.:

>>> font.kerning.keys()
[("A", "Y"), ("A", "V"), ("A", "W")]

BaseKerning.items()
Returns a list of tuples of each pair and value. Pairs are a tuple of two Strings and values are Integer/Float.

20 Chapter 2. Object Reference

FontParts Documentation, Release 0.1

The initial list will be unordered.

>>> font.kerning.items()
[(("A", "V"), -30), (("A", "W"), -10)]

BaseKerning.values()
Returns a list of each pair’s values, the values will be Integer/Floats.

The list will be unordered.

>>> font.kerning.items()
[-20, -15, 5, 3.5]

BaseKerning.__contains__(pair)
Tests to see if a pair is in the Kerning. pair will be a tuple of two Strings.

This returns a bool indicating if the pair is in the Kerning.

>>> ("A", "V") in font.kerning
True

BaseKerning.__setitem__(pair, value)
Sets the pair to the list of value. pair is the pair as a tuple of two Strings and value

is a Integer/Float.

>>> font.kerning[("A", "V")] = -20
>>> font.kerning[("A", "W")] = -10.5

BaseKerning.__getitem__(pair)
Returns the kerning value of the pair. pair is a tuple of two Strings.

The returned value will be a Integer/Float.:

>>> font.kerning[("A", "V")]
-15

It is important to understand that any changes to the returned value will not be reflected in the Kerning object.
If one wants to make a change to the value, one should do the following:

>>> value = font.kerning[("A", "V")]
>>> value += 10
>>> font.kerning[("A", "V")] = value

BaseKerning.get(pair, default=None)
Returns the value for the kerning pair. pair is a tuple of two Strings, and the returned values will either be
Integer/Float or None if no pair was found.

>>> font.kerning[("A", "V")]
-25

It is important to understand that any changes to the returned value will not be reflected in the Kerning object.
If one wants to make a change to the value, one should do the following:

>>> value = font.kerning[("A", "V")]
>>> value += 10
>>> font.kerning[("A", "V")] = value

2.1. Objects 21

FontParts Documentation, Release 0.1

BaseKerning.find(pair, default=None)
Returns the value for the kerning pair - even if the pair only exists implicitly (one or both sides may be members
of a kerning group).

pair is a tuple of two Strings, and the returned values will either be Integer/Float or None if no pair was
found.

>>> font.kerning[("A", "V")]
-25

BaseKerning.__delitem__(pair)
Removes pair from the Kerning. pair is a tuple of two Strings.:

>>> del font.kerning[("A","V")]

BaseKerning.pop(pair, default=None)
Removes the pair from the Kerning and returns the value as an int. If no pair is found, default is returned.
pair is a tuple of two Strings. This must return either

default or a Integer/Float.

>>> font.kerning.pop(("A", "V"))
-20
>>> font.kerning.pop(("A", "W"))
-10.5

BaseKerning.__iter__()
Iterates through the Kerning, giving the pair for each iteration. The order that the Kerning will iterate though is
not fixed nor is it ordered.:

>>> for pair in font.kerning:
>>> print pair
("A", "Y")
("A", "V")
("A", "W")

BaseKerning.update(otherKerning)
Updates the Kerning based on otherKerning. otherKerning is a dict of kerning information. If a pair
from otherKerning is in Kerning, the pair value will be replaced by the value from otherKerning. If a pair
from otherKerning is not in the Kerning, it is added to the pairs. If Kerning contains a pair that is not in
otherKerning, it is not changed.

>>> font.kerning.update(newKerning)

BaseKerning.clear()
Removes all information from Kerning, resetting the Kerning to an empty dictionary.

>>> font.kerning.clear()

Transformations

BaseKerning.scaleBy(factor)
Scales all kerning values by factor. factor will be an Integer/Float, tuple or list. The first value of the
factor will be used to scale the kerning values.

22 Chapter 2. Object Reference

FontParts Documentation, Release 0.1

>>> myKerning.scaleBy(2)
>>> myKerning.scaleBy((2,3))

Interpolation

BaseKerning.interpolate(factor, minKerning, maxKerning, round=True, suppressError=True)
Interpolates all pairs between two BaseKerning objects:

>>> myKerning.interpolate(kerningOne, kerningTwo)

minKerning and maxKerning. The interpolation occurs on a 0 to 1.0 range where minKerning is located at 0
and maxKerning is located at 1.0. The kerning data is replaced by the interpolated kerning.

• factor is the interpolation value. It may be less than 0 and greater than 1.0. It may be an Integer/Float,
tuple or list. If it is a tuple or list, the first number indicates the x factor and the second number
indicates the y factor.

• round is a bool indicating if the result should be rounded to ints. The default behavior is to round
interpolated kerning.

• suppressError is a bool indicating if incompatible data should be ignored or if an error should be raised
when such incompatibilities are found. The default behavior is to ignore incompatible data.

Normalization

BaseKerning.round(multiple=1)
Rounds the kerning values to increments of multiple, which will be an int.

The default behavior is to round to increments of 1.

Environment

BaseKerning.naked()
Return the environment’s native object that has been wrapped by this object.

>>> loweLevelObj = obj.naked()

BaseKerning.changed(*args, **kwargs)
Tell the environment that something has changed in the object. The behavior of this method will vary from
environment to environment.

>>> obj.changed()

2.1.5 Features

Description

Features is text in the Adobe Font Development Kit for OpenType .fea syntax that describes the OpenType features
of your font. The OpenType Cookbook is a great place to start learning how to write features. Your features must be
self-contained; for example, any glyph or mark classes must be defined within the file. No assumption should be made
about the validity of the syntax, and FontParts does not check the validity of the syntax.

2.1. Objects 23

http://www.adobe.com/devnet/opentype/afdko.html
http://www.adobe.com/devnet/opentype/afdko/topic_feature_file_syntax.html
http://opentypecookbook.com

FontParts Documentation, Release 0.1

Note: It is important to note that the features file may contain data that is a duplicate of or data that is in conflict
with the data in BaseKerning, BaseGroups, and BaseInfo. Synchronization is up to the user and application
developers.

font = CurrentFont()
print(font.features)

Overview

BaseFeatures.copy Copy this object into a new object of the same type.
BaseFeatures.font The features’ parent BaseFont.
BaseFeatures.text The .fea formated text representing the features.It must

be a String..

Reference

class fontParts.base.BaseFeatures(*args, **kwargs)

Copy

BaseFeatures.copy()
Copy this object into a new object of the same type. The returned object will not have a parent object.

Parents

BaseFeatures.font
The features’ parent BaseFont.

Attributes

BaseFeatures.text
The .fea formated text representing the features. It must be a String.

2.1.6 Lib

Overview

BaseLib.copy Copy this object into a new object of the same type.
BaseLib.glyph The lib’s parent glyph.
BaseLib.font The lib’s parent font.
BaseLib.__len__ Returns the number of keys in Lib as an int..
BaseLib.keys Returns a list of all the key names in Lib.
BaseLib.items Returns a list of tuple of each key name and key

items.
Continued on next page

24 Chapter 2. Object Reference

http://www.adobe.com/devnet/opentype/afdko/topic_feature_file_syntax.html
http://www.adobe.com/devnet/opentype/afdko/topic_feature_file_syntax.html

FontParts Documentation, Release 0.1

Table 16 – continued from previous page
BaseLib.values Returns a list of each named key’s members.
BaseLib.__contains__ Tests to see if a lib name is in the Lib.
BaseLib.__setitem__ Sets the key to the list of items.
BaseLib.__getitem__ Returns the contents of the named lib.
BaseLib.get Returns the contents of the named key.
BaseLib.__delitem__ Removes key from the Lib.
BaseLib.pop Removes the key from the Lib and returns the list of

key members.
BaseLib.__iter__ Iterates through the Lib, giving the key for each itera-

tion.
BaseLib.update Updates the Lib based on otherLib.
BaseLib.clear Removes all keys from Lib, resetting the Lib to an

empty dictionary.
BaseLib.naked Return the environment’s native object that has been

wrapped by this object.
BaseLib.changed Tell the environment that something has changed in the

object.

Reference

class fontParts.base.BaseLib(*args, **kwargs)
A Lib object. This object normally created as part of a BaseFont. An orphan Lib object can be created like
this:

>>> lib = RLib()

This object behaves like a Python dictionary. Most of the dictionary functionality comes from BaseDict, look
at that object for the required environment implementation details.

Lib uses normalizers.normalizeLibKey to normalize the key of the dict, and normalizers.
normalizeLibValue to normalize the value of the dict.

Copy

BaseLib.copy()
Copy this object into a new object of the same type. The returned object will not have a parent object.

Parents

BaseLib.glyph
The lib’s parent glyph.

BaseLib.font
The lib’s parent font.

Dictionary

BaseLib.__len__()
Returns the number of keys in Lib as an int.:

2.1. Objects 25

FontParts Documentation, Release 0.1

>>> len(font.lib)
5

BaseLib.keys()
Returns a list of all the key names in Lib. This list will be unordered.:

>>> font.lib.keys()
["public.glyphOrder", "org.robofab.scripts.SomeData",
"public.postscriptNames"]

BaseLib.items()
Returns a list of tuple of each key name and key items. Keys are String and key members are a list of
String. The initial list will be unordered.

>>> font.lib.items()
[("public.glyphOrder", ["A", "B", "C"]),
("public.postscriptNames", {'be': 'uni0431', 'ze': 'uni0437'})]

BaseLib.values()
Returns a list of each named key’s members. This will be a list of lists, the key members will be a list of
String. The initial list will be unordered.

>>> font.lib.items()
[["A", "B", "C"], {'be': 'uni0431', 'ze': 'uni0437'}]

BaseLib.__contains__(key)
Tests to see if a lib name is in the Lib. key will be a String. This returns a bool indicating if the key is in the
Lib.

>>> "public.glyphOrder" in font.lib
True

BaseLib.__setitem__(key, items)
Sets the key to the list of items. key is the lib name as a String and items is a list of items as String.

>>> font.lib["public.glyphOrder"] = ["A", "B", "C"]

BaseLib.__getitem__(key)
Returns the contents of the named lib. key is a String. The returned value will be a list of the lib contents.:

>>> font.lib["public.glyphOrder"]
["A", "B", "C"]

It is important to understand that any changes to the returned lib contents will not be reflected in the Lib object.
If one wants to make a change to the lib contents, one should do the following:

>>> lib = font.lib["public.glyphOrder"]
>>> lib.remove("A")
>>> font.lib["public.glyphOrder"] = lib

BaseLib.get(key, default=None)
Returns the contents of the named key. key is a String, and the returned values will either be list of key
contents or None if no key was found.

>>> font.lib["public.glyphOrder"]
["A", "B", "C"]

26 Chapter 2. Object Reference

FontParts Documentation, Release 0.1

It is important to understand that any changes to the returned key contents will not be reflected in the Lib object.
If one wants to make a change to the key contents, one should do the following:

>>> lib = font.lib["public.glyphOrder"]
>>> lib.remove("A")
>>> font.lib["public.glyphOrder"] = lib

BaseLib.__delitem__(key)
Removes key from the Lib. key is a String.:

>>> del font.lib["public.glyphOrder"]

BaseLib.pop(key, default=None)
Removes the key from the Lib and returns the list of key members. If no key is found, default is returned.
key is a String. This must return either default or a list of items as String.

>>> font.lib.pop("public.glyphOrder")
["A", "B", "C"]

BaseLib.__iter__()
Iterates through the Lib, giving the key for each iteration. The order that the Lib will iterate though is not fixed
nor is it ordered.:

>>> for key in font.lib:
>>> print key
"public.glyphOrder"
"org.robofab.scripts.SomeData"
"public.postscriptNames"

BaseLib.update(otherLib)
Updates the Lib based on otherLib. otherLib* is a dict of keys. If a key from otherLib is in Lib the key
members will be replaced by the key members from otherLib. If a key from otherLib is not in the Lib, it is
added to the Lib. If Lib contain a key name that is not in otherLib*, it is not changed.

>>> font.lib.update(newLib)

BaseLib.clear()
Removes all keys from Lib, resetting the Lib to an empty dictionary.

>>> font.lib.clear()

Environment

BaseLib.naked()
Return the environment’s native object that has been wrapped by this object.

>>> loweLevelObj = obj.naked()

BaseLib.changed(*args, **kwargs)
Tell the environment that something has changed in the object. The behavior of this method will vary from
environment to environment.

>>> obj.changed()

2.1. Objects 27

FontParts Documentation, Release 0.1

2.1.7 Layer

Note: This section needs to contain the following:

• description of what this is

• sub-object with basic usage

• glyph interaction with basic usage

Overview

Copy

BaseLayer.copy Copy the layer into a new layer that does not belong to
a font.

Parents

BaseLayer.font The layer’s parent BaseFont.

Attributes

BaseLayer.name The name of the layer.
BaseLayer.color The layer’s color.

Sub-Objects

BaseLayer.lib The layer’s BaseLib object.
BaseLayer.tempLib The layer’s BaseLib object.

Glyphs

BaseLayer.__len__ An int representing number of glyphs in the layer.
BaseLayer.keys Get a list of all glyphs in the layer.
BaseLayer.__iter__ Iterate through the BaseGlyph objects in the layer.
BaseLayer.__contains__ Test if the layer contains a glyph with name.
BaseLayer.__getitem__ Get the BaseGlyph with name from the layer.
BaseLayer.newGlyph Make a new glyph with name in the layer.
BaseLayer.insertGlyph Insert glyph into the layer.
BaseLayer.removeGlyph Remove the glyph with name from the layer.

Interpolation

28 Chapter 2. Object Reference

FontParts Documentation, Release 0.1

BaseLayer.isCompatible Evaluate interpolation compatibility with other.
BaseLayer.interpolate Interpolate all possible data in the layer.

Normalization

BaseLayer.round Round all approriate data to integers.
BaseLayer.autoUnicodes Use heuristics to set Unicode values in all glyphs.

Environment

BaseLayer.naked Return the environment’s native object that has been
wrapped by this object.

BaseLayer.changed Tell the environment that something has changed in the
object.

Reference

class fontParts.base.BaseLayer(*args, **kwargs)

Copy

BaseLayer.copy()
Copy the layer into a new layer that does not belong to a font.

>>> copiedLayer = layer.copy()

This will copy:

• name

• color

• lib

• glyphs

Parents

BaseLayer.font
The layer’s parent BaseFont.

>>> font = layer.font

Attributes

BaseLayer.name
The name of the layer.

2.1. Objects 29

FontParts Documentation, Release 0.1

>>> layer.name
"foreground"
>>> layer.name = "top"

BaseLayer.color
The layer’s color.

>>> layer.color
None
>>> layer.color = (1, 0, 0, 0.5)

Sub-Objects

BaseLayer.lib
The layer’s BaseLib object.

>>> layer.lib["org.robofab.hello"]
"world"

Glyphs

BaseLayer.__len__()
An int representing number of glyphs in the layer.

>>> len(layer)
256

BaseLayer.keys()
Get a list of all glyphs in the layer.

>>> layer.keys()
["B", "C", "A"]

The order of the glyphs is undefined.

BaseLayer.__iter__()
Iterate through the BaseGlyph objects in the layer.

>>> for glyph in layer:
... glyph.name
"A"
"B"
"C"

BaseLayer.__contains__(name)
Test if the layer contains a glyph with name.

>>> "A" in layer
True

BaseLayer.__getitem__(name)
Get the BaseGlyph with name from the layer.

30 Chapter 2. Object Reference

FontParts Documentation, Release 0.1

>>> glyph = layer["A"]

BaseLayer.newGlyph(name, clear=True)
Make a new glyph with name in the layer.

>>> glyph = layer.newGlyph("A")

The newly created BaseGlyph will be returned.

If the glyph exists in the layer and clear is set to False, the existing glyph will be returned, otherwise the
default behavior is to clear the exisiting glyph.

BaseLayer.insertGlyph(glyph, name=None)
Insert glyph into the layer.

>>> glyph = layer.insertGlyph(otherGlyph, name="A")

This method is deprecated. BaseFont.__setitem__ instead.

BaseLayer.removeGlyph(name)
Remove the glyph with name from the layer.

>>> layer.removeGlyph("A")

This method is deprecated. BaseFont.__delitem__ instead.

Interpolation

BaseLayer.isCompatible(other)
Evaluate interpolation compatibility with other.

>>> compat, report = self.isCompatible(otherLayer)
>>> compat
False
>>> report
A
-
[Fatal] The glyphs do not contain the same number of contours.

This will return a bool indicating if the layer is compatible for interpolation with other and a String of com-
patibility notes.

BaseLayer.interpolate(factor, minLayer, maxLayer, round=True, suppressError=True)
Interpolate all possible data in the layer.

>>> layer.interpolate(0.5, otherLayer1, otherLayer2)
>>> layer.interpolate((0.5, 2.0), otherLayer1, otherLayer2, round=False)

The interpolation occurs on a 0 to 1.0 range where minLayer is located at 0 and maxLayer is located at 1.0.
factor is the interpolation value. It may be less than 0 and greater than 1.0. It may be a Integer/Float or a tuple
of two Integer/Float. If it is a tuple, the first number indicates the x factor and the second number indicates the
y factor. round indicates if the result should be rounded to integers. suppressError indicates if incompatible
data should be ignored or if an error should be raised when such incompatibilities are found.

2.1. Objects 31

FontParts Documentation, Release 0.1

Normalization

BaseLayer.round()
Round all approriate data to integers.

>>> layer.round()

This is the equivalent of calling the round method on:

• all glyphs in the layer

BaseLayer.autoUnicodes()
Use heuristics to set Unicode values in all glyphs.

>>> layer.autoUnicodes()

Environments will define their own heuristics for automatically determining values.

Environment

BaseLayer.naked()
Return the environment’s native object that has been wrapped by this object.

>>> loweLevelObj = obj.naked()

BaseLayer.changed(*args, **kwargs)
Tell the environment that something has changed in the object. The behavior of this method will vary from
environment to environment.

>>> obj.changed()

2.1.8 Glyph

BaseGlyph(*args, **kwargs) A glyph object.
BaseGlyph.addImage([path, data, scale, . . .]) Set the image in the glyph.
BaseGlyph.anchors An Immutable List of all anchors in the glyph.
BaseGlyph.appendAnchor([name, position, . . .]) Append an anchor to this glyph.
BaseGlyph.appendComponent([baseGlyph, . . .]) Append a component to this glyph.
BaseGlyph.appendContour(contour[, offset]) Append a contour containing the same data as contour

to this glyph.
BaseGlyph.appendGlyph(other[, offset]) Append the data from other to new objects in this glyph.
BaseGlyph.appendGuideline([position, angle,
. . .])

Append a guideline to this glyph.

BaseGlyph.area The area of the glyph as a Integer/Float or, in the case of
empty glyphs None.

BaseGlyph.autoContourOrder() Automatically order the contours based on heuristics.
BaseGlyph.autoUnicodes() Use heuristics to set the Unicode values in the glyph.
BaseGlyph.bottomMargin The glyph’s bottom margin.
BaseGlyph.bounds The bounds of the glyph in the form (x minimum,

y minimum, x maximum, y maximum) or, in the
case of empty glyphs None.

Continued on next page

32 Chapter 2. Object Reference

FontParts Documentation, Release 0.1

Table 25 – continued from previous page
BaseGlyph.box Deprecated Glyph.box
BaseGlyph.center([padding])
BaseGlyph.changed(*args, **kwargs) Tell the environment that something has changed in the ob-

ject.
BaseGlyph.clear([contours, components, . . .]) Clear the glyph.
BaseGlyph.clearAnchors() Clear all anchors in the glyph.
BaseGlyph.clearComponents() Clear all components in the glyph.
BaseGlyph.clearContours() Clear all contours in the glyph.
BaseGlyph.clearGuidelines() Clear all guidelines in the glyph.
BaseGlyph.clearHGuides()
BaseGlyph.clearImage() Remove the image from the glyph.
BaseGlyph.clearVGuides()
BaseGlyph.compatibilityReporterClass alias of fontParts.base.compatibility.

GlyphCompatibilityReporter
BaseGlyph.components An Immutable List of all components in the glyph.
BaseGlyph.contours An Immutable List of all contours in the glyph.
BaseGlyph.copy() Copy this glyph’s data into a new glyph object.
BaseGlyph.copyAttributes
BaseGlyph.copyClass
BaseGlyph.copyData(source) Subclasses may override this method.
BaseGlyph.correctDirection([trueType]) Correct the winding direction of the contours following the

PostScript recommendations.
BaseGlyph.decompose() Decompose all components in the glyph to contours.
BaseGlyph.draw(pen[, contours, components]) Draw the glyph’s outline data (contours and components)

to the given type-pen.
BaseGlyph.drawPoints(pen[, contours, compo-
nents])

Draw the glyph’s outline data (contours and components)
to the given type-pointpen.

BaseGlyph.dumpToGLIF([glyphFormatVersion]) This will return the glyph’s contents as a string in GLIF
format.

BaseGlyph.font The glyph’s parent font.
BaseGlyph.fromMathGlyph(mathGlyph[, . . .]) Replaces the contents of this glyph with the contents of

mathGlyph.
BaseGlyph.getAnchors()
BaseGlyph.getComponents()
BaseGlyph.getLayer(name) Get the type-glyph-layer with name in this glyph.
BaseGlyph.getParent()
BaseGlyph.getPen() Return a type-pen object for adding outline data to the

glyph.
BaseGlyph.getPointPen() Return a type-pointpen object for adding outline data to the

glyph.
BaseGlyph.guidelines An Immutable List of all guidelines in the glyph.
BaseGlyph.height The glyph’s height.
BaseGlyph.image The BaseImage for the glyph.
BaseGlyph.interpolate(factor, minGlyph, maxG-
lyph)

Interpolate the contents of this glyph at location
factor in a linear interpolation between minGlyph and
maxGlyph.

BaseGlyph.isCompatible(other) Evaluate the interpolation compatibility of this glyph and
other.

BaseGlyph.isEmpty() This will return type-bool indicating if there are contours
and/or components in the glyph.

BaseGlyph.layer The glyph’s parent layer.
Continued on next page

2.1. Objects 33

http://unifiedfontobject.org/versions/ufo3/glyphs/glif/
http://unifiedfontobject.org/versions/ufo3/glyphs/glif/

FontParts Documentation, Release 0.1

Table 25 – continued from previous page
BaseGlyph.layers Immutable tuple of the glyph’s layers.
BaseGlyph.leftMargin The glyph’s left margin.
BaseGlyph.lib The BaseLib for the glyph.
BaseGlyph.loadFromGLIF(glifData) Reads glifData, in GLIF format, into this glyph.

BaseGlyph.mark Deprecated Mark color
BaseGlyph.markColor The glyph’s mark color.
BaseGlyph.move(*args, **kwargs)
BaseGlyph.moveBy(value) Move the object.
BaseGlyph.naked() Return the environment’s native object that has been

wrapped by this object.
BaseGlyph.name The glyph’s name.
BaseGlyph.newLayer(name) Make a new layer with name in this glyph.
BaseGlyph.note The glyph’s note.
BaseGlyph.pointInside(point) Determine if point is in the black or white of the glyph.
BaseGlyph.raiseNotImplementedError() This exception needs to be raised frequently by the base

classes.
BaseGlyph.readGlyphFromString(glifData)
BaseGlyph.removeAnchor(anchor) Remove anchor from the glyph.
BaseGlyph.removeComponent(component) Remove component from the glyph.
BaseGlyph.removeContour(contour) Remove contour from the glyph.
BaseGlyph.removeGuideline(guideline) Remove guideline from the glyph.
BaseGlyph.removeLayer(layer) Remove layer from this glyph.
BaseGlyph.removeOverlap() Perform a remove overlap operation on the contours.
BaseGlyph.rightMargin The glyph’s right margin.
BaseGlyph.rotate(*args, **kwargs)
BaseGlyph.rotateBy(value[, origin]) Rotate the object.
BaseGlyph.round() Round coordinates to the nearest integer.
BaseGlyph.scale(*args, **kwargs)
BaseGlyph.scaleBy(value[, origin, width, height]) Scale the object.
BaseGlyph.selected The object’s selection state.
BaseGlyph.selectedAnchors An Immutable List of anchors selected in the glyph.
BaseGlyph.selectedComponents An Immutable List of components selected in the glyph.
BaseGlyph.selectedContours An Immutable List of contours selected in the glyph.
BaseGlyph.selectedGuidelines An Immutable List of guidelines selected in the glyph.
BaseGlyph.setChanged()
BaseGlyph.setParent(parent)
BaseGlyph.skew(*args, **kwargs)
BaseGlyph.skewBy(value[, origin]) Skew the object.
BaseGlyph.tempLib The BaseLib for the glyph.
BaseGlyph.toMathGlyph([. . .]) Returns the glyph as an object that follows the MathGlyph

protocol.
BaseGlyph.topMargin The glyph’s top margin.
BaseGlyph.transform(*args, **kwargs)
BaseGlyph.transformBy(matrix[, origin]) Transform the object.
BaseGlyph.translate(*args, **kwargs)
BaseGlyph.unicode The glyph’s primary unicode value.
BaseGlyph.unicodes The glyph’s unicode values in order from most to least im-

portant.
BaseGlyph.update()

Continued on next page

34 Chapter 2. Object Reference

http://unifiedfontobject.org/versions/ufo3/glyphs/glif/
https://github.com/typesupply/fontMath
https://github.com/typesupply/fontMath

FontParts Documentation, Release 0.1

Table 25 – continued from previous page
BaseGlyph.width The glyph’s width.
BaseGlyph.writeGlyphToString([. . .])

Description

The Glyph object represents a glyph, its parts and associated data.

Glyph can be used as a list of Contour objects.

When a Glyph is obtained from a Font object, the font is the parent object of the glyph.

Overview

Copy

BaseGlyph.copy Copy this glyph’s data into a new glyph object.

Parents

BaseGlyph.layer The glyph’s parent layer.
BaseGlyph.font The glyph’s parent font.

Identification

BaseGlyph.name The glyph’s name.
BaseGlyph.unicodes The glyph’s unicode values in order from most to least

important.
BaseGlyph.unicode The glyph’s primary unicode value.

Metrics

BaseGlyph.width The glyph’s width.
BaseGlyph.leftMargin The glyph’s left margin.
BaseGlyph.rightMargin The glyph’s right margin.
BaseGlyph.height The glyph’s height.
BaseGlyph.bottomMargin The glyph’s bottom margin.
BaseGlyph.topMargin The glyph’s top margin.

Queries

BaseGlyph.bounds The bounds of the glyph in the form (x minimum, y
minimum, x maximum, y maximum) or, in the
case of empty glyphs None.

BaseGlyph.pointInside Determine if point is in the black or white of the
glyph.

2.1. Objects 35

FontParts Documentation, Release 0.1

Pens and Drawing

BaseGlyph.getPen Return a type-pen object for adding outline data to the
glyph.

BaseGlyph.getPointPen Return a type-pointpen object for adding outline data to
the glyph.

BaseGlyph.draw Draw the glyph’s outline data (contours and compo-
nents) to the given type-pen.

BaseGlyph.drawPoints Draw the glyph’s outline data (contours and compo-
nents) to the given type-pointpen.

Layers

BaseGlyph.layers Immutable tuple of the glyph’s layers.
BaseGlyph.getLayer Get the type-glyph-layer with name in this glyph.
BaseGlyph.newLayer Make a new layer with name in this glyph.
BaseGlyph.removeLayer Remove layer from this glyph.

Global

BaseGlyph.clear Clear the glyph.
BaseGlyph.appendGlyph Append the data from other to new objects in this

glyph.

Contours

BaseGlyph.contours An Immutable List of all contours in the glyph.
BaseGlyph.__len__ The number of contours in the glyph.
BaseGlyph.__iter__ Iterate through all contours in the glyph.
BaseGlyph.__getitem__ Get the contour located at index from the glyph.
BaseGlyph.appendContour Append a contour containing the same data as

contour to this glyph.
BaseGlyph.removeContour Remove contour from the glyph.
BaseGlyph.clearContours Clear all contours in the glyph.
BaseGlyph.removeOverlap Perform a remove overlap operation on the contours.

Components

BaseGlyph.components An Immutable List of all components in the glyph.
BaseGlyph.appendComponent Append a component to this glyph.
BaseGlyph.removeComponent Remove component from the glyph.
BaseGlyph.clearComponents Clear all components in the glyph.
BaseGlyph.decompose Decompose all components in the glyph to contours.

36 Chapter 2. Object Reference

FontParts Documentation, Release 0.1

Anchors

BaseGlyph.anchors An Immutable List of all anchors in the glyph.
BaseGlyph.appendAnchor Append an anchor to this glyph.
BaseGlyph.removeAnchor Remove anchor from the glyph.
BaseGlyph.clearAnchors Clear all anchors in the glyph.

Guidelines

BaseGlyph.guidelines An Immutable List of all guidelines in the glyph.
BaseGlyph.appendGuideline Append a guideline to this glyph.
BaseGlyph.removeGuideline Remove guideline from the glyph.
BaseGlyph.clearGuidelines Clear all guidelines in the glyph.

Image

BaseGlyph.image The BaseImage for the glyph.
BaseGlyph.addImage Set the image in the glyph.
BaseGlyph.clearImage Remove the image from the glyph.

Note

BaseGlyph.note The glyph’s note.
BaseGlyph.markColor The glyph’s mark color.

Sub-Objects

BaseGlyph.lib The BaseLib for the glyph.
BaseGlyph.tempLib The BaseLib for the glyph.

Transformations

BaseGlyph.transformBy Transform the object.
BaseGlyph.moveBy Move the object.
BaseGlyph.scaleBy Scale the object.
BaseGlyph.rotateBy Rotate the object.
BaseGlyph.skewBy Skew the object.

Interpolation

BaseGlyph.isCompatible Evaluate the interpolation compatibility of this glyph
and other.

Continued on next page

2.1. Objects 37

FontParts Documentation, Release 0.1

Table 42 – continued from previous page
BaseGlyph.interpolate Interpolate the contents of this glyph at location

factor in a linear interpolation between minGlyph
and maxGlyph.

Normalization

BaseGlyph.round Round coordinates to the nearest integer.
BaseGlyph.autoUnicodes Use heuristics to set the Unicode values in the glyph.

Environment

BaseGlyph.naked Return the environment’s native object that has been
wrapped by this object.

BaseGlyph.changed Tell the environment that something has changed in the
object.

Reference

class fontParts.base.BaseGlyph(*args, **kwargs)
A glyph object. This object will almost always be created by retrieving it from a font object.

Copy

BaseGlyph.copy()
Copy this glyph’s data into a new glyph object. This new glyph object will not belong to a font.

>>> copiedGlyph = glyph.copy()

This will copy:

• name

• unicodes

• width

• height

• note

• markColor

• lib

• contours

• components

• anchors

• guidelines

• image

38 Chapter 2. Object Reference

FontParts Documentation, Release 0.1

Parents

BaseGlyph.layer
The glyph’s parent layer.

>>> layer = glyph.layer

BaseGlyph.font
The glyph’s parent font.

>>> font = glyph.font

Identification

BaseGlyph.name
The glyph’s name. This will be a String.

>>> glyph.name
"A"
>>> glyph.name = "A.alt"

BaseGlyph.unicodes
The glyph’s unicode values in order from most to least important.

>>> glyph.unicodes
(65,)
>>> glyph.unicodes = [65, 66]
>>> glyph.unicodes = []

The values in the returned tuple will be type-int. When setting you may use a list of type-int or type-hex values.

BaseGlyph.unicode
The glyph’s primary unicode value.

>>> glyph.unicode
65
>>> glyph.unicode = None

This is equivalent to glyph.unicodes[0]. Setting a glyph.unicode value will reset glyph.
unicodes to a tuple containing that value or an empty tuple if value is None.

>>> glyph.unicodes
(65, 67)
>>> glyph.unicode = 65
>>> glyph.unicodes
(65,)
>>> glyph.unicode = None
>>> glyph.unicodes
()

The returned value will be an type-int or None. When setting you may send type-int or type-hex values or
None.

2.1. Objects 39

FontParts Documentation, Release 0.1

Metrics

BaseGlyph.width
The glyph’s width.

>>> glyph.width
500
>>> glyph.width = 200

The value will be a Integer/Float.

BaseGlyph.leftMargin
The glyph’s left margin.

>>> glyph.leftMargin
35
>>> glyph.leftMargin = 45

The value will be a Integer/Float or None if the glyph has no outlines.

BaseGlyph.rightMargin
The glyph’s right margin.

>>> glyph.rightMargin
35
>>> glyph.rightMargin = 45

The value will be a Integer/Float or None if the glyph has no outlines.

BaseGlyph.height
The glyph’s height.

>>> glyph.height
500
>>> glyph.height = 200

The value will be a Integer/Float.

BaseGlyph.bottomMargin
The glyph’s bottom margin.

>>> glyph.bottomMargin
35
>>> glyph.bottomMargin = 45

The value will be a Integer/Float or None if the glyph has no outlines.

BaseGlyph.topMargin
The glyph’s top margin.

>>> glyph.topMargin
35
>>> glyph.topMargin = 45

The value will be a Integer/Float or None if the glyph has no outlines.

40 Chapter 2. Object Reference

FontParts Documentation, Release 0.1

Queries

BaseGlyph.bounds
The bounds of the glyph in the form (x minimum, y minimum, x maximum, y maximum) or, in
the case of empty glyphs None.

>>> glyph.bounds
(10, 30, 765, 643)

BaseGlyph.pointInside(point)
Determine if point is in the black or white of the glyph.

>>> glyph.pointInside((40, 65))
True

point must be a Coordinate.

Pens and Drawing

BaseGlyph.getPen()
Return a type-pen object for adding outline data to the glyph.

>>> pen = glyph.getPen()

BaseGlyph.getPointPen()
Return a type-pointpen object for adding outline data to the glyph.

>>> pointPen = glyph.getPointPen()

BaseGlyph.draw(pen, contours=True, components=True)
Draw the glyph’s outline data (contours and components) to the given type-pen.

>>> glyph.draw(pen)

If contours is set to False, the glyph’s contours will not be drawn.

>>> glyph.draw(pen, contours=False)

If components is set to False, the glyph’s components will not be drawn.

>>> glyph.draw(pen, components=False)

BaseGlyph.drawPoints(pen, contours=True, components=True)
Draw the glyph’s outline data (contours and components) to the given type-pointpen.

>>> glyph.drawPoints(pointPen)

If contours is set to False, the glyph’s contours will not be drawn.

>>> glyph.drawPoints(pointPen, contours=False)

If components is set to False, the glyph’s components will not be drawn.

>>> glyph.drawPoints(pointPen, components=False)

2.1. Objects 41

FontParts Documentation, Release 0.1

Layers

Layer interaction in glyphs is very similar to the layer interaction in fonts. When you ask a glyph for a layer, you get a
glyph layer in return. A glyph layer lets you do anything that you can do to a glyph. In fact a glyph layer is really just
a glyph.

>>> bgdGlyph = glyph.newLayer('background')
>>> bgdGlyph.appendGlyph(glyph)
>>> bgdGlyph.appendGuideline((10, 10), 45)

BaseGlyph.layers
Immutable tuple of the glyph’s layers.

>>> glyphLayers = glyph.layers

This will return a tuple of all type-glyph-layer in the glyph.

BaseGlyph.getLayer(name)
Get the type-glyph-layer with name in this glyph.

>>> glyphLayer = glyph.getLayer("foreground")

BaseGlyph.newLayer(name)
Make a new layer with name in this glyph.

>>> glyphLayer = glyph.newLayer("background")

This will return the new type-glyph-layer. If the layer already exists in this glyph, it will be cleared.

BaseGlyph.removeLayer(layer)
Remove layer from this glyph.

>>> glyph.removeLayer("background")

Layer can be a type-glyph-layer or a String representing a layer name.

Global

BaseGlyph.clear(contours=True, components=True, anchors=True, guidelines=True, image=True)
Clear the glyph.

>>> glyph.clear()

This clears:

• contours

• components

• anchors

• guidelines

• image

It’s possible to turn off the clearing of portions of the glyph with the listed arguments.

>>> glyph.clear(guidelines=False)

42 Chapter 2. Object Reference

FontParts Documentation, Release 0.1

BaseGlyph.appendGlyph(other, offset=None)
Append the data from other to new objects in this glyph.

>>> glyph.appendGlyph(otherGlyph)

This will append:

• contours

• components

• anchors

• guidelines

offset indicates the x and y shift values that should be applied to the appended data. It must be a Coordinate
value or None. If None is given, the offset will be (0, 0).

>>> glyph.appendGlyph(otherGlyph, (100, 0))

Contours

BaseGlyph.contours
An Immutable List of all contours in the glyph.

>>> contours = glyph.contours

The list will contain BaseContour objects.

BaseGlyph.__len__()
The number of contours in the glyph.

>>> len(glyph)
2

BaseGlyph.__iter__()
Iterate through all contours in the glyph.

>>> for contour in glyph:
... contour.reverse()

BaseGlyph.__getitem__(index)
Get the contour located at index from the glyph.

>>> contour = glyph[0]

The returned value will be a BaseContour object.

BaseGlyph.appendContour(contour, offset=None)
Append a contour containing the same data as contour to this glyph.

>>> contour = glyph.appendContour(contour)

This will return a BaseContour object representing the new contour in the glyph. offset indicates the x
and y shift values that should be applied to the appended data. It must be a Coordinate value or None. If None
is given, the offset will be (0, 0).

2.1. Objects 43

FontParts Documentation, Release 0.1

>>> contour = glyph.appendContour(contour, (100, 0))

BaseGlyph.removeContour(contour)
Remove contour from the glyph.

>>> glyph.removeContour(contour)

contour may be a BaseContour or an type-int representing a contour index.

BaseGlyph.clearContours()
Clear all contours in the glyph.

>>> glyph.clearContours()

BaseGlyph.removeOverlap()
Perform a remove overlap operation on the contours.

>>> glyph.removeOverlap()

The behavior of this may vary across environments.

Components

BaseGlyph.components
An Immutable List of all components in the glyph.

>>> components = glyph.components

The list will contain BaseComponent objects.

BaseGlyph.appendComponent(baseGlyph=None, offset=None, scale=None, component=None)
Append a component to this glyph.

>>> component = glyph.appendComponent("A")

This will return a BaseComponent object representing the new component in the glyph. offset indicates
the x and y shift values that should be applied to the appended component. It must be a Coordinate value or
None. If None is given, the offset will be (0, 0).

>>> component = glyph.appendComponent("A", offset=(10, 20))

scale indicates the x and y scale values that should be applied to the appended component. It must be a
type-scale value or None. If None is given, the scale will be (1.0, 1.0).

>>> component = glyph.appendComponent("A", scale=(1.0, 2.0))

component may be a BaseComponent object from which attribute values will be copied. If baseGlyph,
offset or scale are specified as arguments, those values will be used instead of the values in the given
component object.

BaseGlyph.removeComponent(component)
Remove component from the glyph.

>>> glyph.removeComponent(component)

component may be a BaseComponent or an type-int representing a component index.

44 Chapter 2. Object Reference

FontParts Documentation, Release 0.1

BaseGlyph.clearComponents()
Clear all components in the glyph.

>>> glyph.clearComponents()

BaseGlyph.decompose()
Decompose all components in the glyph to contours.

>>> glyph.decompose()

Anchors

BaseGlyph.anchors
An Immutable List of all anchors in the glyph.

>>> anchors = glyph.anchors

The list will contain BaseAnchor objects.

BaseGlyph.appendAnchor(name=None, position=None, color=None, anchor=None)
Append an anchor to this glyph.

>>> anchor = glyph.appendAnchor("top", (10, 20))

This will return a BaseAnchor object representing the new anchor in the glyph. name indicated the name to
be assigned to the anchor. It must be a String or None. position indicates the x and y location to be applied
to the anchor. It must be a Coordinate value. color indicates the color to be applied to the anchor. It must be
a Color or None.

>>> anchor = glyph.appendAnchor("top", (10, 20), color=(1, 0, 0, 1))

anchor may be a BaseAnchor object from which attribute values will be copied. If name, position or
color are specified as arguments, those values will be used instead of the values in the given anchor object.

BaseGlyph.removeAnchor(anchor)
Remove anchor from the glyph.

>>> glyph.removeAnchor(anchor)

anchor may be an BaseAnchor or an type-int representing an anchor index.

BaseGlyph.clearAnchors()
Clear all anchors in the glyph.

>>> glyph.clearAnchors()

Guidelines

BaseGlyph.guidelines
An Immutable List of all guidelines in the glyph.

>>> guidelines = glyph.guidelines

The list will contain BaseGuideline objects.

2.1. Objects 45

FontParts Documentation, Release 0.1

BaseGlyph.appendGuideline(position=None, angle=None, name=None, color=None, guide-
line=None)

Append a guideline to this glyph.

>>> guideline = glyph.appendGuideline((100, 0), 90)

This will return a BaseGuideline object representing the new guideline in the glyph. position indicates
the x and y location to be used as the center point of the anchor. It must be a Coordinate value. angle indicates
the angle of the guideline, in degrees. This must be a Integer/Float between 0 and 360. name indicates an name
to be assigned to the guideline. It must be a String or None.

>>> guideline = glyph.appendGuideline((100, 0), 90, name="left")

color indicates the color to be applied to the guideline. It must be a Color or None.

>>> guideline = glyph.appendGuideline((100, 0), 90, color=(1, 0, 0, 1))

guideline may be a BaseGuideline object from which attribute values will be copied. If position,
angle, name or color are specified as arguments, those values will be used instead of the values in the given
guideline object.

BaseGlyph.removeGuideline(guideline)
Remove guideline from the glyph.

>>> glyph.removeGuideline(guideline)

guideline may be a BaseGuideline or an type-int representing an guideline index.

BaseGlyph.clearGuidelines()
Clear all guidelines in the glyph.

>>> glyph.clearGuidelines()

Image

BaseGlyph.image
The BaseImage for the glyph.

BaseGlyph.addImage(path=None, data=None, scale=None, position=None, color=None)
Set the image in the glyph. This will return the assigned BaseImage. The image data can be defined via path
to an image file:

>>> image = glyph.addImage(path="/path/to/my/image.png")

The image data can be defined with raw image data via data.

>>> image = glyph.addImage(data=someImageData)

If path and data are both provided, a FontPartsError will be raised. The supported image formats will
vary across environments. Refer to BaseImage for complete details.

scale indicates the x and y scale values that should be applied to the image. It must be a type-scale value or
None.

>>> image = glyph.addImage(path="/p/t/image.png", scale=(0.5, 1.0))

position indicates the x and y location of the lower left point of the image.

46 Chapter 2. Object Reference

FontParts Documentation, Release 0.1

>>> image = glyph.addImage(path="/p/t/image.png", position=(10, 20))

color indicates the color to be applied to the image. It must be a Color or None.

>>> image = glyph.addImage(path="/p/t/image.png", color=(1, 0, 0, 0.5))

BaseGlyph.clearImage()
Remove the image from the glyph.

>>> glyph.clearImage()

Note

BaseGlyph.note
The glyph’s note.

>>> glyph.note
"P.B. said this looks 'awesome.'"
>>> glyph.note = "P.B. said this looks 'AWESOME.'"

The value may be a String or None.

BaseGlyph.markColor
The glyph’s mark color.

>>> glyph.markColor
(1, 0, 0, 0.5)
>>> glyph.markColor = None

The value may be a Color or None.

Sub-Objects

BaseGlyph.lib
The BaseLib for the glyph.

>>> lib = glyph.lib

Transformations

BaseGlyph.transformBy(matrix, origin=None)
Transform the object.

>>> obj.transformBy((0.5, 0, 0, 2.0, 10, 0))
>>> obj.transformBy((0.5, 0, 0, 2.0, 10, 0), origin=(500, 500))

matrix must be a Transformation Matrix. origin defines the point at with the transformation should originate.
It must be a Coordinate or None. The default is (0, 0).

BaseGlyph.moveBy(value)
Move the object.

2.1. Objects 47

FontParts Documentation, Release 0.1

>>> obj.moveBy((10, 0))

value must be an iterable containing two Integer/Float values defining the x and y values to move the object by.

BaseGlyph.scaleBy(value, origin=None, width=False, height=False)
Scale the object.

>>> obj.scaleBy(2.0)
>>> obj.scaleBy((0.5, 2.0), origin=(500, 500))

value must be an iterable containing two Integer/Float values defining the x and y values to scale the object by.
origin defines the point at with the scale should originate. It must be a Coordinate or None. The default is (0,
0).

width indicates if the glyph’s width should be scaled. height indicates if the glyph’s height should be scaled.

The origin must not be specified when scaling the width or height.

BaseGlyph.rotateBy(value, origin=None)
Rotate the object.

>>> obj.rotateBy(45)
>>> obj.rotateBy(45, origin=(500, 500))

value must be a Integer/Float values defining the angle to rotate the object by. origin defines the point at with
the rotation should originate. It must be a Coordinate or None. The default is (0, 0).

BaseGlyph.skewBy(value, origin=None)
Skew the object.

>>> obj.skewBy(11)
>>> obj.skewBy((25, 10), origin=(500, 500))

value must be rone of the following:

• single Integer/Float indicating the value to skew the x direction by.

• iterable cointaining type Integer/Float defining the values to skew the x and y directions by.

origin defines the point at with the skew should originate. It must be a Coordinate or None. The default is (0,
0).

Interpolation

BaseGlyph.isCompatible(other)
Evaluate the interpolation compatibility of this glyph and other.

>>> compatible, report = self.isCompatible(otherGlyph)
>>> compatible
False

This will return a type-bool indicating if this glyph is compatible with other and a
GlyphCompatibilityReporter containing a detailed report about compatibility errors.

BaseGlyph.interpolate(factor, minGlyph, maxGlyph, round=True, suppressError=True)
Interpolate the contents of this glyph at location factor in a linear interpolation between minGlyph and
maxGlyph.

48 Chapter 2. Object Reference

FontParts Documentation, Release 0.1

>>> glyph.interpolate(0.5, otherGlyph1, otherGlyph2)

factor may be a Integer/Float or a tuple containing two Integer/Float values representing x and y factors.

>>> glyph.interpolate((0.5, 1.0), otherGlyph1, otherGlyph2)

minGlyph must be a BaseGlyph and will be located at 0.0 in the interpolation range. maxGlyph must be a
BaseGlyph and will be located at 1.0 in the interpolation range. If round is True, the contents of the glyph
will be rounded to integers after the interpolation is performed.

>>> glyph.interpolate(0.5, otherGlyph1, otherGlyph2, round=True)

This method assumes that minGlyph and maxGlyph are completely compatible with each other for inter-
polation. If not, any errors encountered will raise a FontPartsError. If suppressError is True, no
exception will be raised and errors will be silently ignored.

Normalization

BaseGlyph.round()
Round coordinates to the nearest integer.

>>> glyph.round()

This applies to the following:

• width

• height

• contours

• components

• anchors

• guidelines

BaseGlyph.autoUnicodes()
Use heuristics to set the Unicode values in the glyph.

>>> glyph.autoUnicodes()

Environments will define their own heuristics for automatically determining values.

Environment

BaseGlyph.naked()
Return the environment’s native object that has been wrapped by this object.

>>> loweLevelObj = obj.naked()

BaseGlyph.changed(*args, **kwargs)
Tell the environment that something has changed in the object. The behavior of this method will vary from
environment to environment.

2.1. Objects 49

FontParts Documentation, Release 0.1

>>> obj.changed()

2.1.9 Contour

Description

A Contour is a single path of any number of points. A Glyph usually consists of a couple of contours, and this is the
object that represents each one. The Contour object offers access to the outline matter in various ways. The parent
of Contour is usually Glyph.

Overview

Copy

BaseContour.copy Copy this object into a new object of the same type.

Parents

BaseContour.glyph The contour’s parent BaseGlyph.
BaseContour.layer The contour’s parent layer.
BaseContour.font The contour’s parent font.

Identification

BaseContour.identifier The unique identifier for the object.
BaseContour.index The index of the contour within the parent glyph’s con-

tours.

Winding Direction

BaseContour.clockwise Boolean indicating if the contour’s winding direction is
clockwise.

BaseContour.reverse Reverse the direction of the contour.

Queries

BaseContour.bounds The bounds of the contour: (xMin, yMin, xMax, yMax)
or None.

BaseContour.pointInside Determine if point is in the black or white of the con-
tour.

Pens and Drawing

50 Chapter 2. Object Reference

FontParts Documentation, Release 0.1

BaseContour.draw Draw the contour’s outline data to the given type-pen.
BaseContour.drawPoints Draw the contour’s outline data to the given type-point-

pen.

Segments

BaseContour.segments
BaseContour.__len__
BaseContour.__iter__
BaseContour.__getitem__
BaseContour.appendSegment Append a segment to the contour.
BaseContour.insertSegment Insert a segment into the contour.
BaseContour.removeSegment Remove segment from the contour.
BaseContour.setStartSegment Set the first segment on the contour.
BaseContour.autoStartSegment Automatically calculate and set the first segment in this

contour.

bPoints

BaseContour.bPoints
BaseContour.appendBPoint Append a bPoint to the contour.
BaseContour.insertBPoint Insert a bPoint at index in the contour.

Points

BaseContour.points
BaseContour.appendPoint Append a point to the contour.
BaseContour.insertPoint Insert a point into the contour.
BaseContour.removePoint Remove the point from the contour.

Transformations

BaseContour.transformBy Transform the object.
BaseContour.moveBy Move the object.
BaseContour.scaleBy Scale the object.
BaseContour.rotateBy Rotate the object.
BaseContour.skewBy Skew the object.

Normalization

BaseContour.round Round coordinates in all points to integers.

Environment

2.1. Objects 51

FontParts Documentation, Release 0.1

BaseContour.naked Return the environment’s native object that has been
wrapped by this object.

BaseContour.changed Tell the environment that something has changed in the
object.

Reference

class fontParts.base.BaseContour(*args, **kwargs)

Copy

BaseContour.copy()
Copy this object into a new object of the same type. The returned object will not have a parent object.

Parents

BaseContour.glyph
The contour’s parent BaseGlyph.

BaseContour.layer
The contour’s parent layer.

BaseContour.font
The contour’s parent font.

Identification

BaseContour.identifier
The unique identifier for the object. This value will be an Identifier or a None. This attribute is read only.

>>> object.identifier
'ILHGJlygfds'

To request an identifier if it does not exist use object.getIdentifier()

BaseContour.index
The index of the contour within the parent glyph’s contours.

>>> contour.index
1
>>> contour.index = 0

The value will always be a type-int.

Winding Direction

BaseContour.clockwise
Boolean indicating if the contour’s winding direction is clockwise.

BaseContour.reverse()
Reverse the direction of the contour.

52 Chapter 2. Object Reference

FontParts Documentation, Release 0.1

Queries

BaseContour.bounds
The bounds of the contour: (xMin, yMin, xMax, yMax) or None.

BaseContour.pointInside(point)
Determine if point is in the black or white of the contour.

>>> contour.pointInside((40, 65))
True

point must be a Coordinate.

Pens and Drawing

BaseContour.draw(pen)
Draw the contour’s outline data to the given type-pen.

>>> contour.draw(pen)

BaseContour.drawPoints(pen)
Draw the contour’s outline data to the given type-point-pen.

>>> contour.drawPoints(pointPen)

Segments

BaseContour.segments

BaseContour.__len__()

BaseContour.__iter__()

BaseContour.__getitem__(index)

BaseContour.appendSegment(type=None, points=None, smooth=False, segment=None)
Append a segment to the contour.

BaseContour.insertSegment(index, type=None, points=None, smooth=False, segment=None)
Insert a segment into the contour.

BaseContour.removeSegment(segment, preserveCurve=False)
Remove segment from the contour. If preserveCurve is set to True an attempt will be made to preserve
the shape of the curve if the environment supports that functionality.

BaseContour.setStartSegment(segment)
Set the first segment on the contour. segment can be a segment object or an index.

BaseContour.autoStartSegment()
Automatically calculate and set the first segment in this contour.

The behavior of this may vary accross environments.

bPoints

BaseContour.bPoints

2.1. Objects 53

FontParts Documentation, Release 0.1

BaseContour.appendBPoint(type=None, anchor=None, bcpIn=None, bcpOut=None, bPoint=None)
Append a bPoint to the contour.

BaseContour.insertBPoint(index, type=None, anchor=None, bcpIn=None, bcpOut=None,
bPoint=None)

Insert a bPoint at index in the contour.

Points

BaseContour.points

BaseContour.appendPoint(position=None, type=’line’, smooth=False, name=None, identifier=None,
point=None)

Append a point to the contour.

BaseContour.insertPoint(index, position=None, type=’line’, smooth=False, name=None, identi-
fier=None, point=None)

Insert a point into the contour.

BaseContour.removePoint(point, preserveCurve=False)
Remove the point from the contour. point can be a point object or an index. If preserveCurve is set to True
an attempt will be made to preserve the shape of the curve if the environment supports that functionality.

Transformations

BaseContour.transformBy(matrix, origin=None)
Transform the object.

>>> obj.transformBy((0.5, 0, 0, 2.0, 10, 0))
>>> obj.transformBy((0.5, 0, 0, 2.0, 10, 0), origin=(500, 500))

matrix must be a Transformation Matrix. origin defines the point at with the transformation should originate.
It must be a Coordinate or None. The default is (0, 0).

BaseContour.moveBy(value)
Move the object.

>>> obj.moveBy((10, 0))

value must be an iterable containing two Integer/Float values defining the x and y values to move the object by.

BaseContour.scaleBy(value, origin=None)
Scale the object.

>>> obj.scaleBy(2.0)
>>> obj.scaleBy((0.5, 2.0), origin=(500, 500))

value must be an iterable containing two Integer/Float values defining the x and y values to scale the object by.
origin defines the point at with the scale should originate. It must be a Coordinate or None. The default is (0,
0).

BaseContour.rotateBy(value, origin=None)
Rotate the object.

>>> obj.rotateBy(45)
>>> obj.rotateBy(45, origin=(500, 500))

54 Chapter 2. Object Reference

FontParts Documentation, Release 0.1

value must be a Integer/Float values defining the angle to rotate the object by. origin defines the point at with
the rotation should originate. It must be a Coordinate or None. The default is (0, 0).

BaseContour.skewBy(value, origin=None)
Skew the object.

>>> obj.skewBy(11)
>>> obj.skewBy((25, 10), origin=(500, 500))

value must be rone of the following:

• single Integer/Float indicating the value to skew the x direction by.

• iterable cointaining type Integer/Float defining the values to skew the x and y directions by.

origin defines the point at with the skew should originate. It must be a Coordinate or None. The default is (0,
0).

Normalization

BaseContour.round()
Round coordinates in all points to integers.

Environment

BaseContour.naked()
Return the environment’s native object that has been wrapped by this object.

>>> loweLevelObj = obj.naked()

BaseContour.changed(*args, **kwargs)
Tell the environment that something has changed in the object. The behavior of this method will vary from
environment to environment.

>>> obj.changed()

2.1.10 Segment

Description

A Contour object is a list of segments. A Segment is a list of points with some special attributes and methods.

Overview

Parents

BaseSegment.contour The segment’s parent contour.
BaseSegment.glyph The segment’s parent glyph.
BaseSegment.layer The segment’s parent layer.
BaseSegment.font The segment’s parent font.

2.1. Objects 55

FontParts Documentation, Release 0.1

Identification

BaseSegment.index The index of the segment within the ordered list of the
parent contour’s segments.

Attributes

BaseSegment.type The segment type.
BaseSegment.smooth Boolean indicating if the segment is smooth or not.

Points

BaseSegment.points A list of points in the segment.
BaseSegment.onCurve The on curve point in the segment.
BaseSegment.offCurve The off curve points in the segment.

Transformations

BaseSegment.transformBy Transform the object.
BaseSegment.moveBy Move the object.
BaseSegment.scaleBy Scale the object.
BaseSegment.rotateBy Rotate the object.
BaseSegment.skewBy Skew the object.

Normalization

BaseSegment.round Round coordinates in all points.

Environment

BaseSegment.naked Return the environment’s native object that has been
wrapped by this object.

BaseSegment.changed Tell the environment that something has changed in the
object.

Reference

class fontParts.base.BaseSegment(*args, **kwargs)

Parents

BaseSegment.contour
The segment’s parent contour.

56 Chapter 2. Object Reference

FontParts Documentation, Release 0.1

BaseSegment.glyph
The segment’s parent glyph.

BaseSegment.layer
The segment’s parent layer.

BaseSegment.font
The segment’s parent font.

Identification

BaseSegment.index
The index of the segment within the ordered list of the parent contour’s segments.

Attributes

BaseSegment.type
The segment type. The possible types are move, line, curve, qcurve.

BaseSegment.smooth
Boolean indicating if the segment is smooth or not.

Points

BaseSegment.points
A list of points in the segment.

BaseSegment.onCurve
The on curve point in the segment.

BaseSegment.offCurve
The off curve points in the segment.

Transformations

BaseSegment.transformBy(matrix, origin=None)
Transform the object.

>>> obj.transformBy((0.5, 0, 0, 2.0, 10, 0))
>>> obj.transformBy((0.5, 0, 0, 2.0, 10, 0), origin=(500, 500))

matrix must be a Transformation Matrix. origin defines the point at with the transformation should originate.
It must be a Coordinate or None. The default is (0, 0).

BaseSegment.moveBy(value)
Move the object.

>>> obj.moveBy((10, 0))

value must be an iterable containing two Integer/Float values defining the x and y values to move the object by.

BaseSegment.scaleBy(value, origin=None)
Scale the object.

2.1. Objects 57

FontParts Documentation, Release 0.1

>>> obj.scaleBy(2.0)
>>> obj.scaleBy((0.5, 2.0), origin=(500, 500))

value must be an iterable containing two Integer/Float values defining the x and y values to scale the object by.
origin defines the point at with the scale should originate. It must be a Coordinate or None. The default is (0,
0).

BaseSegment.rotateBy(value, origin=None)
Rotate the object.

>>> obj.rotateBy(45)
>>> obj.rotateBy(45, origin=(500, 500))

value must be a Integer/Float values defining the angle to rotate the object by. origin defines the point at with
the rotation should originate. It must be a Coordinate or None. The default is (0, 0).

BaseSegment.skewBy(value, origin=None)
Skew the object.

>>> obj.skewBy(11)
>>> obj.skewBy((25, 10), origin=(500, 500))

value must be rone of the following:

• single Integer/Float indicating the value to skew the x direction by.

• iterable cointaining type Integer/Float defining the values to skew the x and y directions by.

origin defines the point at with the skew should originate. It must be a Coordinate or None. The default is (0,
0).

Normalization

BaseSegment.round()
Round coordinates in all points.

Environment

BaseSegment.naked()
Return the environment’s native object that has been wrapped by this object.

>>> loweLevelObj = obj.naked()

BaseSegment.changed(*args, **kwargs)
Tell the environment that something has changed in the object. The behavior of this method will vary from
environment to environment.

>>> obj.changed()

2.1.11 bPoint

58 Chapter 2. Object Reference

FontParts Documentation, Release 0.1

Description

The bPoint is a point object which mimics the old “Bezier Point” from RoboFog. It has attributes for bcpIn,
anchor, bcpOut and type. The coordinates in bcpIn and bcpOut are relative to the position of the anchor. For instance,
if the bcpIn is 20 units to the left of the anchor, its coordinates would be (-20,0), regardless of the coordinates of the
anchor itself. Also: bcpIn will be (0,0) when it is “on top of the anchor”, i.e. when there is no bcp it will still have a
value. The parent of a bPoint is usually a Contour.

Overview

Parents

BaseBPoint.contour The bPoint’s parent contour.
BaseBPoint.glyph The bPoint’s parent glyph.
BaseBPoint.layer The bPoint’s parent layer.
BaseBPoint.font The bPoint’s parent font.

Identification

BaseBPoint.index The index of the bPoint within the ordered list of the
parent contour’s bPoints.

Attributes

BaseBPoint.type The bPoint type.

Points

BaseBPoint.anchor The anchor point.
BaseBPoint.bcpIn The incoming off curve.
BaseBPoint.bcpOut The outgoing off curve.

Transformations

BaseBPoint.transformBy Transform the object.
BaseBPoint.moveBy Move the object.
BaseBPoint.scaleBy Scale the object.
BaseBPoint.rotateBy Rotate the object.
BaseBPoint.skewBy Skew the object.

Normalization

BaseBPoint.round Round coordinates.

2.1. Objects 59

FontParts Documentation, Release 0.1

Environment

BaseBPoint.naked Return the environment’s native object that has been
wrapped by this object.

BaseBPoint.changed Tell the environment that something has changed in the
object.

Reference

class fontParts.base.BaseBPoint(*args, **kwargs)

Parents

BaseBPoint.contour
The bPoint’s parent contour.

BaseBPoint.glyph
The bPoint’s parent glyph.

BaseBPoint.layer
The bPoint’s parent layer.

BaseBPoint.font
The bPoint’s parent font.

Identification

BaseBPoint.index
The index of the bPoint within the ordered list of the parent contour’s bPoints. None if the bPoint does not
belong to a contour.

Attributes

BaseBPoint.type
The bPoint type.

Points

BaseBPoint.anchor
The anchor point.

BaseBPoint.bcpIn
The incoming off curve.

BaseBPoint.bcpOut
The outgoing off curve.

60 Chapter 2. Object Reference

FontParts Documentation, Release 0.1

Transformations

BaseBPoint.transformBy(matrix, origin=None)
Transform the object.

>>> obj.transformBy((0.5, 0, 0, 2.0, 10, 0))
>>> obj.transformBy((0.5, 0, 0, 2.0, 10, 0), origin=(500, 500))

matrix must be a Transformation Matrix. origin defines the point at with the transformation should originate.
It must be a Coordinate or None. The default is (0, 0).

BaseBPoint.moveBy(value)
Move the object.

>>> obj.moveBy((10, 0))

value must be an iterable containing two Integer/Float values defining the x and y values to move the object by.

BaseBPoint.scaleBy(value, origin=None)
Scale the object.

>>> obj.scaleBy(2.0)
>>> obj.scaleBy((0.5, 2.0), origin=(500, 500))

value must be an iterable containing two Integer/Float values defining the x and y values to scale the object by.
origin defines the point at with the scale should originate. It must be a Coordinate or None. The default is (0,
0).

BaseBPoint.rotateBy(value, origin=None)
Rotate the object.

>>> obj.rotateBy(45)
>>> obj.rotateBy(45, origin=(500, 500))

value must be a Integer/Float values defining the angle to rotate the object by. origin defines the point at with
the rotation should originate. It must be a Coordinate or None. The default is (0, 0).

BaseBPoint.skewBy(value, origin=None)
Skew the object.

>>> obj.skewBy(11)
>>> obj.skewBy((25, 10), origin=(500, 500))

value must be rone of the following:

• single Integer/Float indicating the value to skew the x direction by.

• iterable cointaining type Integer/Float defining the values to skew the x and y directions by.

origin defines the point at with the skew should originate. It must be a Coordinate or None. The default is (0,
0).

Normalization

BaseBPoint.round()
Round coordinates.

2.1. Objects 61

FontParts Documentation, Release 0.1

Environment

BaseBPoint.naked()
Return the environment’s native object that has been wrapped by this object.

>>> loweLevelObj = obj.naked()

BaseBPoint.changed(*args, **kwargs)
Tell the environment that something has changed in the object. The behavior of this method will vary from
environment to environment.

>>> obj.changed()

2.1.12 Point

Description

Point represents one single point with a particular coordinate in a contour. It is used to access off-curve and on-curve
points alike. Its cousin BPoint also provides access to incoming and outgoing bcps. Point is exclusively only one
single point.

glyph = CurrentGlyph()
for contour in glyph:

for point in contour.points:
print(point)

Overview

Copy

BasePoint.copy Copy this object into a new object of the same type.

Parents

BasePoint.contour The point’s parent BaseContour.
BasePoint.glyph The point’s parent BaseGlyph.
BasePoint.layer The point’s parent BaseLayer.
BasePoint.font The point’s parent BaseFont.

Identification

BasePoint.name The name of the point.
BasePoint.identifier The unique identifier for the object.
BasePoint.index The index of the point within the ordered list of the par-

ent glyph’s point.

62 Chapter 2. Object Reference

FontParts Documentation, Release 0.1

Coordinate

BasePoint.x The x coordinate of the point.
BasePoint.y The y coordinate of the point.

Type

BasePoint.type The point type defined with a String.
BasePoint.smooth A bool indicating if the point is smooth or not.

Transformations

BasePoint.transformBy Transform the object.
BasePoint.moveBy Move the object.
BasePoint.scaleBy Scale the object.
BasePoint.rotateBy Rotate the object.
BasePoint.skewBy Skew the object.

Normalization

BasePoint.round Round the point’s coordinate.

Environment

BasePoint.naked Return the environment’s native object that has been
wrapped by this object.

BasePoint.changed Tell the environment that something has changed in the
object.

Reference

Copy

BasePoint.copy()
Copy this object into a new object of the same type. The returned object will not have a parent object.

Parents

BasePoint.contour
The point’s parent BaseContour.

BasePoint.glyph
The point’s parent BaseGlyph.

BasePoint.layer
The point’s parent BaseLayer.

2.1. Objects 63

FontParts Documentation, Release 0.1

BasePoint.font
The point’s parent BaseFont.

Identification

BasePoint.name
The name of the point. This will be a String or None.

>>> point.name
'my point'
>>> point.name = None

BasePoint.identifier
The unique identifier for the object. This value will be an Identifier or a None. This attribute is read only.

>>> object.identifier
'ILHGJlygfds'

To request an identifier if it does not exist use object.getIdentifier()

BasePoint.index
The index of the point within the ordered list of the parent glyph’s point. This attribute is read only.

>>> point.index
0

Coordinate

BasePoint.x
The x coordinate of the point. It must be an Integer/Float.

>>> point.x
100
>>> point.x = 101

BasePoint.y
The y coordinate of the point. It must be an Integer/Float.

>>> point.y
100
>>> point.y = 101

Type

BasePoint.type
The point type defined with a String. The possible types are:

move An on-curve move to.
line An on-curve line to.
curve An on-curve cubic curve to.
qcurve An on-curve quadratic curve to.
offcurve An off-curve.

64 Chapter 2. Object Reference

FontParts Documentation, Release 0.1

BasePoint.smooth
A bool indicating if the point is smooth or not.

>>> point.smooth
False
>>> point.smooth = True

Transformations

BasePoint.transformBy(matrix, origin=None)
Transform the object.

>>> obj.transformBy((0.5, 0, 0, 2.0, 10, 0))
>>> obj.transformBy((0.5, 0, 0, 2.0, 10, 0), origin=(500, 500))

matrix must be a Transformation Matrix. origin defines the point at with the transformation should originate.
It must be a Coordinate or None. The default is (0, 0).

BasePoint.moveBy(value)
Move the object.

>>> obj.moveBy((10, 0))

value must be an iterable containing two Integer/Float values defining the x and y values to move the object by.

BasePoint.scaleBy(value, origin=None)
Scale the object.

>>> obj.scaleBy(2.0)
>>> obj.scaleBy((0.5, 2.0), origin=(500, 500))

value must be an iterable containing two Integer/Float values defining the x and y values to scale the object by.
origin defines the point at with the scale should originate. It must be a Coordinate or None. The default is (0,
0).

BasePoint.rotateBy(value, origin=None)
Rotate the object.

>>> obj.rotateBy(45)
>>> obj.rotateBy(45, origin=(500, 500))

value must be a Integer/Float values defining the angle to rotate the object by. origin defines the point at with
the rotation should originate. It must be a Coordinate or None. The default is (0, 0).

BasePoint.skewBy(value, origin=None)
Skew the object.

>>> obj.skewBy(11)
>>> obj.skewBy((25, 10), origin=(500, 500))

value must be rone of the following:

• single Integer/Float indicating the value to skew the x direction by.

• iterable cointaining type Integer/Float defining the values to skew the x and y directions by.

origin defines the point at with the skew should originate. It must be a Coordinate or None. The default is (0,
0).

2.1. Objects 65

FontParts Documentation, Release 0.1

Normalization

BasePoint.round()
Round the point’s coordinate.

>>> point.round()

This applies to the following:

• x

• y

Environment

BasePoint.naked()
Return the environment’s native object that has been wrapped by this object.

>>> loweLevelObj = obj.naked()

BasePoint.changed(*args, **kwargs)
Tell the environment that something has changed in the object. The behavior of this method will vary from
environment to environment.

>>> obj.changed()

2.1.13 Component

Description

A component can be a part of a glyph, and it is a reference to another glyph in the same font. With components you
can make glyphs depend on other glyphs. Changes to the base glyph will reflect in the component as well.

The parent of a component is usually a glyph. Components can be decomposed: they replace themselves with the
actual outlines from the base glyph. When that happens, the link between the original and the component is broken:
changes to the base glyph will no longer reflect in the glyph that had the component.

Overview

Parents

BaseComponent.glyph The component’s parent glyph.
BaseComponent.layer The component’s parent layer.
BaseComponent.font The component’s parent font.

Copy

BaseComponent.copy Copy this object into a new object of the same type.

66 Chapter 2. Object Reference

FontParts Documentation, Release 0.1

Identification

BaseComponent.identifier The unique identifier for the object.
BaseComponent.index The index of the component within the ordered list of

the parent glyph’s components.

Attributes

BaseComponent.baseGlyph The name of the glyph the component references.
BaseComponent.transformation The component’s transformation matrix.
BaseComponent.offset The component’s offset.
BaseComponent.scale The component’s scale.

Queries

BaseComponent.bounds The bounds of the component: (xMin, yMin, xMax,
yMax) or None.

BaseComponent.pointInside Determine if point is in the black or white of the com-
ponent.

Pens and Drawing

BaseComponent.draw Draw the component with the given Pen.
BaseComponent.drawPoints Draw the contour with the given PointPen.

Transformations

BaseComponent.transformBy Transform the object.
BaseComponent.moveBy Move the object.
BaseComponent.scaleBy Scale the object.
BaseComponent.rotateBy Rotate the object.
BaseComponent.skewBy Skew the object.

Normalization

BaseComponent.decompose Decompose the component.
BaseComponent.round Round offset coordinates.

Environment

BaseComponent.naked Return the environment’s native object that has been
wrapped by this object.

Continued on next page

2.1. Objects 67

FontParts Documentation, Release 0.1

Table 87 – continued from previous page
BaseComponent.changed Tell the environment that something has changed in the

object.

Reference

class fontParts.base.BaseComponent(*args, **kwargs)

Parents

BaseComponent.glyph
The component’s parent glyph.

BaseComponent.layer
The component’s parent layer.

BaseComponent.font
The component’s parent font.

Copy

BaseComponent.copy()
Copy this object into a new object of the same type. The returned object will not have a parent object.

Identification

BaseComponent.identifier
The unique identifier for the object. This value will be an Identifier or a None. This attribute is read only.

>>> object.identifier
'ILHGJlygfds'

To request an identifier if it does not exist use object.getIdentifier()

BaseComponent.index
The index of the component within the ordered list of the parent glyph’s components.

Attributes

BaseComponent.baseGlyph
The name of the glyph the component references.

BaseComponent.transformation
The component’s transformation matrix.

BaseComponent.offset
The component’s offset.

BaseComponent.scale
The component’s scale.

68 Chapter 2. Object Reference

FontParts Documentation, Release 0.1

Queries

BaseComponent.bounds
The bounds of the component: (xMin, yMin, xMax, yMax) or None.

BaseComponent.pointInside(point)
Determine if point is in the black or white of the component.

point must be an (x, y) tuple.

Pens and Drawing

BaseComponent.draw(pen)
Draw the component with the given Pen.

BaseComponent.drawPoints(pen)
Draw the contour with the given PointPen.

Transformations

BaseComponent.transformBy(matrix, origin=None)
Transform the object.

>>> obj.transformBy((0.5, 0, 0, 2.0, 10, 0))
>>> obj.transformBy((0.5, 0, 0, 2.0, 10, 0), origin=(500, 500))

matrix must be a Transformation Matrix. origin defines the point at with the transformation should originate.
It must be a Coordinate or None. The default is (0, 0).

BaseComponent.moveBy(value)
Move the object.

>>> obj.moveBy((10, 0))

value must be an iterable containing two Integer/Float values defining the x and y values to move the object by.

BaseComponent.scaleBy(value, origin=None)
Scale the object.

>>> obj.scaleBy(2.0)
>>> obj.scaleBy((0.5, 2.0), origin=(500, 500))

value must be an iterable containing two Integer/Float values defining the x and y values to scale the object by.
origin defines the point at with the scale should originate. It must be a Coordinate or None. The default is (0,
0).

BaseComponent.rotateBy(value, origin=None)
Rotate the object.

>>> obj.rotateBy(45)
>>> obj.rotateBy(45, origin=(500, 500))

value must be a Integer/Float values defining the angle to rotate the object by. origin defines the point at with
the rotation should originate. It must be a Coordinate or None. The default is (0, 0).

BaseComponent.skewBy(value, origin=None)
Skew the object.

2.1. Objects 69

FontParts Documentation, Release 0.1

>>> obj.skewBy(11)
>>> obj.skewBy((25, 10), origin=(500, 500))

value must be rone of the following:

• single Integer/Float indicating the value to skew the x direction by.

• iterable cointaining type Integer/Float defining the values to skew the x and y directions by.

origin defines the point at with the skew should originate. It must be a Coordinate or None. The default is (0,
0).

Normalization

BaseComponent.decompose()
Decompose the component.

BaseComponent.round()
Round offset coordinates.

Environment

BaseComponent.naked()
Return the environment’s native object that has been wrapped by this object.

>>> loweLevelObj = obj.naked()

BaseComponent.changed(*args, **kwargs)
Tell the environment that something has changed in the object. The behavior of this method will vary from
environment to environment.

>>> obj.changed()

2.1.14 Anchor

Description

Anchors are single points in a glyph which are not part of a contour. They can be used as reference positions for doing
things like assembling components. In most font editors, anchors have a special appearance and can be edited.

glyph = CurrentGlyph()
for anchor in glyph.anchors:

print(anchor)

Overview

Copy

BaseAnchor.copy Copy this object into a new object of the same type.

70 Chapter 2. Object Reference

FontParts Documentation, Release 0.1

Parents

BaseAnchor.glyph The anchor’s parent BaseGlyph.
BaseAnchor.layer The anchor’s parent BaseLayer.
BaseAnchor.font The anchor’s parent BaseFont.

Identification

BaseAnchor.name The name of the anchor.
BaseAnchor.color The anchor’s color.
BaseAnchor.identifier The unique identifier for the object.
BaseAnchor.index The index of the anchor within the ordered list of the

parent glyph’s anchors.

Coordinate

BaseAnchor.x The x coordinate of the anchor.
BaseAnchor.y The y coordinate of the anchor.

Transformations

BaseAnchor.transformBy Transform the object.
BaseAnchor.moveBy Move the object.
BaseAnchor.scaleBy Scale the object.
BaseAnchor.rotateBy Rotate the object.
BaseAnchor.skewBy Skew the object.

Normalization

BaseAnchor.round Round the anchor’s coordinate.

Environment

BaseAnchor.naked Return the environment’s native object that has been
wrapped by this object.

BaseAnchor.changed Tell the environment that something has changed in the
object.

Reference

class fontParts.base.BaseAnchor(*args, **kwargs)
An anchor object. This object is almost always created with BaseGlyph.appendAnchor. An orphan
anchor can be created like this:

2.1. Objects 71

FontParts Documentation, Release 0.1

>>> anchor = RAnchor()

Copy

BaseAnchor.copy()
Copy this object into a new object of the same type. The returned object will not have a parent object.

Parents

BaseAnchor.glyph
The anchor’s parent BaseGlyph.

BaseAnchor.layer
The anchor’s parent BaseLayer.

BaseAnchor.font
The anchor’s parent BaseFont.

Identification

BaseAnchor.name
The name of the anchor. This will be a String or None.

>>> anchor.name
'my anchor'
>>> anchor.name = None

BaseAnchor.color
The anchor’s color. This will be a Color or None.

>>> anchor.color
None
>>> anchor.color = (1, 0, 0, 0.5)

BaseAnchor.identifier
The unique identifier for the object. This value will be an Identifier or a None. This attribute is read only.

>>> object.identifier
'ILHGJlygfds'

To request an identifier if it does not exist use object.getIdentifier()

BaseAnchor.index
The index of the anchor within the ordered list of the parent glyph’s anchors. This attribute is read only.

>>> anchor.index
0

Coordinate

BaseAnchor.x
The x coordinate of the anchor. It must be an Integer/Float.

72 Chapter 2. Object Reference

FontParts Documentation, Release 0.1

>>> anchor.x
100
>>> anchor.x = 101

BaseAnchor.y
The y coordinate of the anchor. It must be an Integer/Float.

>>> anchor.y
100
>>> anchor.y = 101

Transformations

BaseAnchor.transformBy(matrix, origin=None)
Transform the object.

>>> obj.transformBy((0.5, 0, 0, 2.0, 10, 0))
>>> obj.transformBy((0.5, 0, 0, 2.0, 10, 0), origin=(500, 500))

matrix must be a Transformation Matrix. origin defines the point at with the transformation should originate.
It must be a Coordinate or None. The default is (0, 0).

BaseAnchor.moveBy(value)
Move the object.

>>> obj.moveBy((10, 0))

value must be an iterable containing two Integer/Float values defining the x and y values to move the object by.

BaseAnchor.scaleBy(value, origin=None)
Scale the object.

>>> obj.scaleBy(2.0)
>>> obj.scaleBy((0.5, 2.0), origin=(500, 500))

value must be an iterable containing two Integer/Float values defining the x and y values to scale the object by.
origin defines the point at with the scale should originate. It must be a Coordinate or None. The default is (0,
0).

BaseAnchor.rotateBy(value, origin=None)
Rotate the object.

>>> obj.rotateBy(45)
>>> obj.rotateBy(45, origin=(500, 500))

value must be a Integer/Float values defining the angle to rotate the object by. origin defines the point at with
the rotation should originate. It must be a Coordinate or None. The default is (0, 0).

BaseAnchor.skewBy(value, origin=None)
Skew the object.

>>> obj.skewBy(11)
>>> obj.skewBy((25, 10), origin=(500, 500))

value must be rone of the following:

• single Integer/Float indicating the value to skew the x direction by.

2.1. Objects 73

FontParts Documentation, Release 0.1

• iterable cointaining type Integer/Float defining the values to skew the x and y directions by.

origin defines the point at with the skew should originate. It must be a Coordinate or None. The default is (0,
0).

Normalization

BaseAnchor.round()
Round the anchor’s coordinate.

>>> anchor.round()

This applies to the following:

• x

• y

Environment

BaseAnchor.naked()
Return the environment’s native object that has been wrapped by this object.

>>> loweLevelObj = obj.naked()

BaseAnchor.changed(*args, **kwargs)
Tell the environment that something has changed in the object. The behavior of this method will vary from
environment to environment.

>>> obj.changed()

2.1.15 Image

Overview

BaseImage.copy Copy this object into a new object of the same type.
BaseImage.glyph The image’s parent BaseGlyph.
BaseImage.layer The image’s parent BaseLayer.
BaseImage.font The image’s parent BaseFont.
BaseImage.data The image’s raw byte data.
BaseImage.color The image’s color.
BaseImage.transformation The image’s Transformation Matrix.
BaseImage.offset The image’s offset.
BaseImage.scale The image’s scale.
BaseImage.transformBy Transform the object.
BaseImage.moveBy Move the object.
BaseImage.scaleBy Scale the object.
BaseImage.rotateBy Rotate the object.
BaseImage.skewBy Skew the object.
BaseImage.round Round offset coordinates.

Continued on next page

74 Chapter 2. Object Reference

FontParts Documentation, Release 0.1

Table 95 – continued from previous page
BaseImage.naked Return the environment’s native object that has been

wrapped by this object.
BaseImage.changed Tell the environment that something has changed in the

object.

Reference

class fontParts.base.BaseImage(*args, **kwargs)

Copy

BaseImage.copy()
Copy this object into a new object of the same type. The returned object will not have a parent object.

Parents

BaseImage.glyph
The image’s parent BaseGlyph.

BaseImage.layer
The image’s parent BaseLayer.

BaseImage.font
The image’s parent BaseFont.

Attributes

BaseImage.data
The image’s raw byte data. The possible formats are defined by each environment.

BaseImage.color
The image’s color. This will be a Color or None.

>>> image.color
None
>>> image.color = (1, 0, 0, 0.5)

BaseImage.transformation
The image’s Transformation Matrix. This defines the image’s position, scale, and rotation.

>>> image.transformation
(1, 0, 0, 1, 0, 0)
>>> image.transformation = (2, 0, 0, 2, 100, -50)

BaseImage.offset
The image’s offset. This is a shortcut to the offset values in transformation. This must be an iterable
containing two Integer/Float values defining the x and y values to offset the image by.

>>> image.offset
(0, 0)
>>> image.offset = (100, -50)

2.1. Objects 75

FontParts Documentation, Release 0.1

BaseImage.scale
The image’s scale. This is a shortcut to the scale values in transformation. This must be an iterable
containing two Integer/Float values defining the x and y values to scale the image by.

>>> image.scale
(1, 1)
>>> image.scale = (2, 2)

Transformations

BaseImage.transformBy(matrix, origin=None)
Transform the object.

>>> obj.transformBy((0.5, 0, 0, 2.0, 10, 0))
>>> obj.transformBy((0.5, 0, 0, 2.0, 10, 0), origin=(500, 500))

matrix must be a Transformation Matrix. origin defines the point at with the transformation should originate.
It must be a Coordinate or None. The default is (0, 0).

BaseImage.moveBy(value)
Move the object.

>>> obj.moveBy((10, 0))

value must be an iterable containing two Integer/Float values defining the x and y values to move the object by.

BaseImage.scaleBy(value, origin=None)
Scale the object.

>>> obj.scaleBy(2.0)
>>> obj.scaleBy((0.5, 2.0), origin=(500, 500))

value must be an iterable containing two Integer/Float values defining the x and y values to scale the object by.
origin defines the point at with the scale should originate. It must be a Coordinate or None. The default is (0,
0).

BaseImage.rotateBy(value, origin=None)
Rotate the object.

>>> obj.rotateBy(45)
>>> obj.rotateBy(45, origin=(500, 500))

value must be a Integer/Float values defining the angle to rotate the object by. origin defines the point at with
the rotation should originate. It must be a Coordinate or None. The default is (0, 0).

BaseImage.skewBy(value, origin=None)
Skew the object.

>>> obj.skewBy(11)
>>> obj.skewBy((25, 10), origin=(500, 500))

value must be rone of the following:

• single Integer/Float indicating the value to skew the x direction by.

• iterable cointaining type Integer/Float defining the values to skew the x and y directions by.

76 Chapter 2. Object Reference

FontParts Documentation, Release 0.1

origin defines the point at with the skew should originate. It must be a Coordinate or None. The default is (0,
0).

Normalization

BaseImage.round()
Round offset coordinates.

Environment

BaseImage.naked()
Return the environment’s native object that has been wrapped by this object.

>>> loweLevelObj = obj.naked()

BaseImage.changed(*args, **kwargs)
Tell the environment that something has changed in the object. The behavior of this method will vary from
environment to environment.

>>> obj.changed()

2.1.16 Guideline

Description

Guidelines are reference lines in a glyph that are not part of a contour or the generated font data. They are defined
by a point and an angle; the guideline extends from the point in both directions on the specified angle. They are most
often used to keep track of design information for a font (‘my overshoots should be here’) or to measure positions in
a glyph (‘line the ends of my serifs on this line’). They can also be used as reference positions for doing things like
assembling components. In most font editors, guidelines have a special appearance and can be edited.

glyph = CurrentGlyph()
for guideline in glyph.guidelines:

print(guideline)

Overview

Copy

BaseGuideline.copy Copy this object into a new object of the same type.

Parents

BaseGuideline.glyph The guideline’s parent BaseGlyph.
BaseGuideline.layer The guideline’s parent BaseLayer.
BaseGuideline.font The guideline’s parent BaseFont.

2.1. Objects 77

FontParts Documentation, Release 0.1

Identification

BaseGuideline.name The name of the guideline.
BaseGuideline.color ”

BaseGuideline.identifier The unique identifier for the object.
BaseGuideline.index The index of the guideline within the ordered list of the

parent glyph’s guidelines.

Attributes

BaseGuideline.x The x coordinate of the guideline.
BaseGuideline.y The y coordinate of the guideline.
BaseGuideline.angle The angle of the guideline.

Transformations

BaseGuideline.transformBy Transform the object.
BaseGuideline.moveBy Move the object.
BaseGuideline.scaleBy Scale the object.
BaseGuideline.rotateBy Rotate the object.
BaseGuideline.skewBy Skew the object.

Normalization

BaseGuideline.round Round the guideline’s coordinate.

Environment

BaseGuideline.naked Return the environment’s native object that has been
wrapped by this object.

BaseGuideline.changed Tell the environment that something has changed in the
object.

Reference

class fontParts.base.BaseGuideline(*args, **kwargs)
A guideline object. This object is almost always created with BaseGlyph.appendGuideline. An orphan
guideline can be created like this:

>>> guideline = RGuideline()

78 Chapter 2. Object Reference

FontParts Documentation, Release 0.1

Copy

BaseGuideline.copy()
Copy this object into a new object of the same type. The returned object will not have a parent object.

Parents

BaseGuideline.glyph
The guideline’s parent BaseGlyph.

BaseGuideline.layer
The guideline’s parent BaseLayer.

BaseGuideline.font
The guideline’s parent BaseFont.

Identification

BaseGuideline.name
The name of the guideline. This will be a String or None.

>>> guideline.name
'my guideline'
>>> guideline.name = None

BaseGuideline.color
” The guideline’s color. This will be a Color or None.

>>> guideline.color
None
>>> guideline.color = (1, 0, 0, 0.5)

BaseGuideline.identifier
The unique identifier for the object. This value will be an Identifier or a None. This attribute is read only.

>>> object.identifier
'ILHGJlygfds'

To request an identifier if it does not exist use object.getIdentifier()

BaseGuideline.index
The index of the guideline within the ordered list of the parent glyph’s guidelines. This attribute is read only.

>>> guideline.index
0

Attributes

BaseGuideline.x
The x coordinate of the guideline. It must be an Integer/Float.

>>> guideline.x
100
>>> guideline.x = 101

2.1. Objects 79

FontParts Documentation, Release 0.1

BaseGuideline.y
The y coordinate of the guideline. It must be an Integer/Float.

>>> guideline.y
100
>>> guideline.y = 101

BaseGuideline.angle
The angle of the guideline. It must be an Angle. Please check how normalizers.
normalizeRotationAngle handles the angle. There is a special case, when angle is None. If so, when x
and y are not 0, the angle will be 0. If x is 0 but y is not, the angle will be 0. If y is 0 and x is not, the angle will
be 90. If both x and y are 0, the angle will be 0.

>>> guideline.angle
45.0
>>> guideline.angle = 90

Transformations

BaseGuideline.transformBy(matrix, origin=None)
Transform the object.

>>> obj.transformBy((0.5, 0, 0, 2.0, 10, 0))
>>> obj.transformBy((0.5, 0, 0, 2.0, 10, 0), origin=(500, 500))

matrix must be a Transformation Matrix. origin defines the point at with the transformation should originate.
It must be a Coordinate or None. The default is (0, 0).

BaseGuideline.moveBy(value)
Move the object.

>>> obj.moveBy((10, 0))

value must be an iterable containing two Integer/Float values defining the x and y values to move the object by.

BaseGuideline.scaleBy(value, origin=None)
Scale the object.

>>> obj.scaleBy(2.0)
>>> obj.scaleBy((0.5, 2.0), origin=(500, 500))

value must be an iterable containing two Integer/Float values defining the x and y values to scale the object by.
origin defines the point at with the scale should originate. It must be a Coordinate or None. The default is (0,
0).

BaseGuideline.rotateBy(value, origin=None)
Rotate the object.

>>> obj.rotateBy(45)
>>> obj.rotateBy(45, origin=(500, 500))

value must be a Integer/Float values defining the angle to rotate the object by. origin defines the point at with
the rotation should originate. It must be a Coordinate or None. The default is (0, 0).

BaseGuideline.skewBy(value, origin=None)
Skew the object.

80 Chapter 2. Object Reference

FontParts Documentation, Release 0.1

>>> obj.skewBy(11)
>>> obj.skewBy((25, 10), origin=(500, 500))

value must be rone of the following:

• single Integer/Float indicating the value to skew the x direction by.

• iterable cointaining type Integer/Float defining the values to skew the x and y directions by.

origin defines the point at with the skew should originate. It must be a Coordinate or None. The default is (0,
0).

Normalization

BaseGuideline.round()
Round the guideline’s coordinate.

>>> guideline.round()

This applies to the following:

• x

• y

It does not apply to

• angle

Environment

BaseGuideline.naked()
Return the environment’s native object that has been wrapped by this object.

>>> loweLevelObj = obj.naked()

BaseGuideline.changed(*args, **kwargs)
Tell the environment that something has changed in the object. The behavior of this method will vary from
environment to environment.

>>> obj.changed()

2.2 Common Value Types

FontParts scripts are built on with objects that represent fonts, glyphs, contours and so on. The objects are obtained
through fontparts-world.

FontParts uses some common value types.

2.2.1 String

Unicode (unencoded) or string. Internally everything is a unicode string.

2.2. Common Value Types 81

FontParts Documentation, Release 0.1

2.2.2 Integer/Float

Integers and floats are interchangeable in FontParts (unless the specification states that only one is allowed).

2.2.3 Coordinate

An immutable iterable containing two Integer/Float representing:

1. x

2. y

2.2.4 Angle

XXX define the angle specifications here. Direction, degrees, etc. This will always be a float.

2.2.5 Identifier

A String following the UFO identifier conventions.

2.2.6 Color

An immutable iterable containing four Integer/Float representing:

1. red

2. green

3. blue

4. alpha

Values are from 0 to 1.0.

2.2.7 Transformation Matrix

An immutable iterable defining a 2x2 transformation plus offset (aka Affine transform). The default is (1, 0, 0,
1, 0, 0).

2.2.8 Immutable List

This must be an immutable, ordered iterable like a tuple.

2.3 fontParts.world

Note: We still need to decide if we need a world module or if we should recommend namespace injection.

82 Chapter 2. Object Reference

http://unifiedfontobject.org/versions/ufo3/conventions/#identifiers

FontParts Documentation, Release 0.1

fontParts.world.AllFonts(sortOptions=None)
Get a list of all open fonts. Optionally, provide a value for sortOptions to sort the fonts. See world.
FontList.sortBy for options.

from fontParts.world import *

fonts = AllFonts()
for font in fonts:

do something

fonts = AllFonts("magic")
for font in fonts:

do something

fonts = AllFonts(["familyName", "styleName"])
for font in fonts:

do something

fontParts.world.NewFont(familyName=None, styleName=None, showInterface=True)
Create a new font. familyName will be assigned to font.info.familyName and styleName will be as-
signed to font.info.styleName. These are optional and default to None. If showInterface is False,
the font should be created without graphical interface. The default for showInterface is True.

from fontParts.world import *

font = NewFont()
font = NewFont(familyName="My Family", styleName="My Style")
font = NewFont(showInterface=False)

fontParts.world.OpenFont(path, showInterface=True)
Open font located at path. If showInterface is False, the font should be opened without graphical interface.
The default for showInterface is True.

from fontParts.world import *

font = OpenFont("/path/to/my/font.ufo")
font = OpenFont("/path/to/my/font.ufo", showInterface=False)

fontParts.world.OpenFonts(directory=None, showInterface=True, fileExtensions=None)
Open all fonts with the given fileExtensions located in directory. If directory is None, a dialog for selecting
a directory will be opened. directory may also be a list of directories. If showInterface is False, the font
should be opened without graphical interface. The default for showInterface is True.

The fonts are located within the directory using the glob <https://docs.python.org/library/glob.html>‘_ module.
The patterns are created with os.path.join(glob, "*" + fileExtension) for every file extension
in fileExtensions. If fileExtensions if None the environment will use its default fileExtensions.

from fontParts.world import *

fonts = OpenFonts()
fonts = OpenFonts(showInterface=False)

fontParts.world.CurrentFont()
Get the “current” font.

fontParts.world.CurrentLayer()
Get the “current” layer from CurrentGlyph.

2.3. fontParts.world 83

https://docs.python.org/library/glob.html

FontParts Documentation, Release 0.1

from fontParts.world import *

layer = CurrentLayer()

fontParts.world.CurrentGlyph()
Get the “current” glyph from CurrentFont.

from fontParts.world import *

glyph = CurrentGlyph()

fontParts.world.CurrentContours()
Get the “currently” selected contours from CurrentGlyph.

from fontParts.world import *

contours = CurrentContours()

This returns an immutable list, even when nothing is selected.

fontParts.world.CurrentSegments()
Get the “currently” selected segments from CurrentContours.

from fontParts.world import *

segments = CurrentSegments()

This returns an immutable list, even when nothing is selected.

fontParts.world.CurrentPoints()
Get the “currently” selected points from CurrentContours.

from fontParts.world import *

points = CurrentPoints()

This returns an immutable list, even when nothing is selected.

fontParts.world.CurrentComponents()
Get the “currently” selected components from CurrentGlyph.

from fontParts.world import *

components = CurrentComponents()

This returns an immutable list, even when nothing is selected.

fontParts.world.CurrentAnchors()
Get the “currently” selected anchors from CurrentGlyph.

from fontParts.world import *

anchors = CurrentAnchors()

This returns an immutable list, even when nothing is selected.

fontParts.world.CurrentGuidelines()
Get the “currently” selected guidelines from CurrentGlyph. This will include both font level and glyph level
guidelines.

84 Chapter 2. Object Reference

FontParts Documentation, Release 0.1

from fontParts.world import *

guidelines = CurrentGuidelines()

This returns an immutable list, even when nothing is selected.

fontParts.world.FontList(fonts=None)
Get a list with font specific methods.

from fontParts.world import *

fonts = FontList()

Refer to BaseFontList for full documentation.

class fontParts.world.BaseFontList

2.3. fontParts.world 85

FontParts Documentation, Release 0.1

86 Chapter 2. Object Reference

CHAPTER 3

Developers

3.1 Implementing FontParts

The whole point of FontParts is to present a common API to scripters. So, obviously, the way to implement it is to
develop an API that is compliant with the object documentation. That’s going to be a non-trivial amount of work, so
we offer a less laborious alternative: we provide a set of base objects that can be subclassed and privately mapped to
an environment’s native API. If you don’t want to use these base objects, you can implement the API all on your own.
You just have to make sure that your implementation is compatible.

3.1.1 Testing

A test suite is provided to test any implementation, either subclassed from the base objects or implemented indepen-
dently. The suite has been designed to be environment and format agnostic. Environment developers only need to
implement a function that provides objects for testing and a simple Python script that sends the function to the test
suite.

Testing an environment

The main thing that an environment needs to implement is the test object generator. This should create an object for
the requested class identifier.

def MyAppObjectGenerator(classIdentifier):
unrequested = []
obj = myApp.foo.bar.something.hi(classIdentifier)
return obj, unrequested

If an environment does not allow orphan objects, parent objects may create the parent objects and store them in a list.
The function must return the generated objects and the list of unrequested objects (or an empty list if no parent objects
were generated).

The class identifiers are as follows:

87

FontParts Documentation, Release 0.1

• font

• info

• groups

• kerning

• features

• lib

• layer

• glyph

• contour

• segment

• bpoint

• point

• component

• anchor

• image

• guideline

Once an environment has developed this function, all that remains is to pass the function to the test runner:

from fontParts.test import testEnvironment

if __name__ == "__main__":
testEnvironment(MyAppObjectGenerator)

This can then be executed and the report will be printed.

It is up to each environment to ensure that the bridge from the environment’s native objects to the fontParts wrappers
is working properly. This has to be done on an environment by environment basis since the native objects are not
consistently implemented.

3.1.2 Subclassing fontObjects.base

The base objects have been designed to provide common behavior, normalization and type consistency for environ-
ments and scripters alike. Environments wrap their native objects with subclasses of fontParts’ base objects and
implement the necessary translation to the native API. Once this is done, the environment will inherit all of the base
behavior from fontParts.

Environments will need to implement their own subclasses of:

Font

Must Override

BaseFont._close(**kwargs)
This is the environment implementation of BaseFont.close.

Subclasses must override this method.

88 Chapter 3. Developers

FontParts Documentation, Release 0.1

BaseFont._generate(format, path, environmentOptions, **kwargs)
This is the environment implementation of BaseFont.generate. format will be a String defining the
output format. Refer to the BaseFont.generate documentation for the standard format identifiers. If the
value given for format is not supported by the environment, the environment must raise FontPartsError.
path will be a String defining the location where the file should be created. It will have been normalized with
normalizers.normalizeFilePath. environmentOptions will be a dictionary of names validated with
BaseFont._isValidGenerateEnvironmentOption nd the given values. These values will not have
been passed through any normalization functions.

Subclasses must override this method.

BaseFont._getGuideline(index, **kwargs)
This must return a BaseGuideline object. index will be a valid index.

Subclasses must override this method.

BaseFont._get_defaultLayer()

BaseFont._get_features()
This is the environment implementation of BaseFont.features. This must return an instance of a
BaseFeatures subclass.

Subclasses must override this method.

BaseFont._get_glyphOrder()
This is the environment implementation of BaseFont.glyphOrder. This must return an Immutable
List containing glyph names representing the glyph order in the font. The value will be normalized with
normalizers.normalizeGlyphOrder.

Subclasses must override this method.

BaseFont._get_groups()
This is the environment implementation of BaseFont.groups. This must return an instance of a
BaseGroups subclass.

Subclasses must override this method.

BaseFont._get_info()
This is the environment implementation of BaseFont.info. This must return an instance of a BaseInfo
subclass.

Subclasses must override this method.

BaseFont._get_kerning()
This is the environment implementation of BaseFont.kerning. This must return an instance of a
BaseKerning subclass.

Subclasses must override this method.

BaseFont._get_layerOrder(**kwargs)
This is the environment implementation of BaseFont.layerOrder. This must return an Immutable List
defining the order of the layers in the font. The contents of the list must be layer names as String. The list will
be normalized with normalizers.normalizeLayerOrder.

Subclasses must override this method.

BaseFont._get_layers(**kwargs)
This is the environment implementation of BaseFont.layers. This must return an Immutable List contain-
ing instances of BaseLayer subclasses. The items in the list should be in the order defined by BaseFont.
layerOrder.

Subclasses must override this method.

3.1. Implementing FontParts 89

FontParts Documentation, Release 0.1

BaseFont._get_lib()
This is the environment implementation of BaseFont.lib. This must return an instance of a BaseLib
subclass.

Subclasses must override this method.

BaseFont._get_path(**kwargs)
This is the environment implementation of BaseFont.path.

This must return a String defining the location of the file or None indicating that the font does not have
a file representation. If the returned value is not None it will be normalized with normalizers.
normalizeFilePath.

Subclasses must override this method.

BaseFont._init(pathOrObject=None, showInterface=True, **kwargs)
Initialize this object. This should wrap a native font object based on the values for pathOrObject:

None Create a new font.
string Open the font file located at the given location.
native font object Wrap the given object.

If showInterface is False, the font should be created without graphical interface.

Subclasses must override this method.

BaseFont._lenGuidelines(**kwargs)
This must return an integer indicating the number of font-level guidelines in the font.

Subclasses must override this method.

BaseFont._newLayer(name, color, **kwargs)
This is the environment implementation of BaseFont.newLayer. name will be a String representing a valid
layer name. The value will have been normalized with normalizers.normalizeLayerName and name
will not be the same as the name of an existing layer. color will be a Color or None. If the value is not None
the value will have been normalized with normalizers.normalizeColor. This must return an instance
of a BaseLayer subclass that represents the new layer.

Subclasses must override this method.

BaseFont._removeGuideline(index, **kwargs)
This is the environment implementation of BaseFont.removeGuideline. index will be a valid index.

Subclasses must override this method.

BaseFont._removeLayer(name, **kwargs)
This is the environment implementation of BaseFont.removeLayer. name will be a String defin-
ing the name of an existing layer. The value will have been normalized with normalizers.
normalizeLayerName.

Subclasses must override this method.

BaseFont._save(path=None, showProgress=False, formatVersion=None, fileStructure=None, **kwargs)
This is the environment implementation of BaseFont.save. path will be a String or None. If path is not
None, the value will have been normalized with normalizers.normalizeFilePath. showProgress
will be a bool indicating if the environment should display a progress bar during the operation. Environ-
ments are not required to display a progress bar even if showProgess is True. formatVersion will be Inte-
ger/Float or None indicating the file format version to write the data into. It will have been normalized with
normalizers.normalizeFileFormatVersion.

Subclasses must override this method.

90 Chapter 3. Developers

FontParts Documentation, Release 0.1

BaseFont._set_defaultLayer(layer)

BaseFont._set_glyphOrder(value)
This is the environment implementation of BaseFont.glyphOrder. value will be a list of String. It will
have been normalized with normalizers.normalizeGlyphOrder.

Subclasses must override this method.

BaseFont._set_layerOrder(value, **kwargs)
This is the environment implementation of BaseFont.layerOrder. value will be a list of String represent-
ing layer names. The list will have been normalized with normalizers.normalizeLayerOrder.

Subclasses must override this method.

May Override

BaseFont._appendGuideline(position, angle, name=None, color=None, identifier=None, **kwargs)
This is the environment implementation of BaseFont.appendGuideline. position will be a valid Coor-
dinate. angle will be a valid angle. name will be a valid String or None. color will be a valid Color or None.
This must return the newly created BaseGuideline object.

Subclasses may override this method.

BaseFont._autoUnicodes()
This is the environment implementation of BaseFont.autoUnicodes.

Subclasses may override this method.

BaseFont._clearGuidelines()
This is the environment implementation of BaseFont.clearGuidelines.

Subclasses may override this method.

BaseFont._contains(name, **kwargs)
This is the environment implementation of BaseLayer.__contains__ and BaseFont.
__contains__ This must return bool indicating if the layer has a glyph with the defined name. name
will be a :ref-type-string‘ representing a glyph name. It will have been normalized with normalizers.
normalizeGlyphName.

Subclasses may override this method.

BaseFont._getItem(name, **kwargs)
This is the environment implementation of BaseFont.__getitem__. name will be a String defin-
ing an existing glyph in the default layer. The value will have been normalized with normalizers.
normalizeGlyphName.

Subclasses may override this method.

BaseFont._getLayer(name, **kwargs)
This is the environment implementation of BaseFont.getLayer. name will be a String. It will have been
normalized with normalizers.normalizeLayerName and it will have been verified as an existing layer.
This must return an instance of BaseLayer.

Subclasses may override this method.

BaseFont._get_guidelines()
This is the environment implementation of BaseFont.guidelines. This must return an Immutable List of
BaseGuideline objects.

Subclasses may override this method.

3.1. Implementing FontParts 91

FontParts Documentation, Release 0.1

BaseFont._insertGlyph(glyph, name, **kwargs)
This is the environment implementation of BaseLayer.__setitem__ and BaseFont.__setitem__.
This must return an instance of a BaseGlyph subclass. glyph will be a glyph object with the attributes
necessary for copying as defined in BaseGlyph.copy An environment must not insert glyph directly. Instead
the data from glyph should be copied to a new glyph instead. name will be a String representing a glyph name.
It will have been normalized with normalizers.normalizeGlyphName. name will have been tested to
make sure that no glyph with the same name exists in the layer.

Subclasses may override this method.

BaseFont._interpolate(factor, minFont, maxFont, round=True, suppressError=True)
This is the environment implementation of BaseFont.interpolate.

Subclasses may override this method.

BaseFont._isCompatible(other, reporter)
This is the environment implementation of BaseFont.isCompatible.

Subclasses may override this method.

BaseFont._iter(**kwargs)
This is the environment implementation of BaseLayer.__iter__ and BaseFont.__iter__ This must
return an iterator that returns instances of a BaseGlyph subclass.

Subclasses may override this method.

BaseFont._keys(**kwargs)
This is the environment implementation of BaseFont.keys. This must return an Immutable List of all glyph
names in the default layer.

Subclasses may override this method.

BaseFont._len(**kwargs)
This is the environment implementation of BaseLayer.__len__ and BaseFont.__len__ This must
return an int indicating the number of glyphs in the layer.

Subclasses may override this method.

BaseFont._newGlyph(name, **kwargs)
This is the environment implementation of BaseFont.newGlyph. name will be a String representing a valid
glyph name. The value will have been tested to make sure that an existing glyph in the default layer does not
have an identical name. The value will have been normalized with normalizers.normalizeGlyphName.
This must return an instance of BaseGlyph representing the new glyph.

Subclasses may override this method.

BaseFont._removeGlyph(name, **kwargs)
This is the environment implementation of BaseFont.removeGlyph. name will be a String represent-
ing an existing glyph in the default layer. The value will have been normalized with normalizers.
normalizeGlyphName.

Subclasses may override this method.

BaseFont._round()
This is the environment implementation of BaseFont.round.

Subclasses may override this method.

Info

Must Override

92 Chapter 3. Developers

FontParts Documentation, Release 0.1

May Override

BaseInfo._getAttr(attr)
Subclasses may override this method.

If a subclass does not override this method, it must implement ‘_get_attributeName’ methods for all Info meth-
ods.

BaseInfo._init(*args, **kwargs)
Subclasses may override this method.

BaseInfo._interpolate(factor, minInfo, maxInfo, round=True, suppressError=True)
Subclasses may override this method.

BaseInfo._round(**kwargs)
Subclasses may override this method.

BaseInfo._setAttr(attr, value)
Subclasses may override this method.

If a subclass does not override this method, it must implement ‘_set_attributeName’ methods for all Info meth-
ods.

BaseInfo.copyData(source)
Subclasses may override this method. If so, they should call the super.

Groups

Must Override

BaseGroups._contains(key)
Subclasses must override this method.

BaseGroups._delItem(key)
Subclasses must override this method.

BaseGroups._getItem(key)
Subclasses must override this method.

BaseGroups._items()
Subclasses must override this method.

BaseGroups._setItem(key, value)
Subclasses must override this method.

May Override

BaseGroups._clear()
Subclasses may override this method.

BaseGroups._findGlyph(glyphName)
This is the environment implementation of BaseGroups.findGlyph. glyphName will be an String.

Subclasses may override this method.

BaseGroups._get(key, default=None)
Subclasses may override this method.

3.1. Implementing FontParts 93

FontParts Documentation, Release 0.1

BaseGroups._init(*args, **kwargs)
Subclasses may override this method.

BaseGroups._iter()
Subclasses may override this method.

BaseGroups._keys()
Subclasses may override this method.

BaseGroups._len()
Subclasses may override this method.

BaseGroups._pop(key, default=None)
Subclasses may override this method.

BaseGroups._update(other)
Subclasses may override this method.

BaseGroups._values()
Subclasses may override this method.

Kerning

Must Override

BaseKerning._contains(key)
Subclasses must override this method.

BaseKerning._delItem(key)
Subclasses must override this method.

BaseKerning._getItem(key)
Subclasses must override this method.

BaseKerning._items()
Subclasses must override this method.

BaseKerning._setItem(key, value)
Subclasses must override this method.

May Override

BaseKerning._clear()
Subclasses may override this method.

BaseKerning._get(key, default=None)
Subclasses may override this method.

BaseKerning._init(*args, **kwargs)
Subclasses may override this method.

BaseKerning._interpolate(factor, minKerning, maxKerning, round=True, suppressError=True)
This is the environment implementation of BaseKerning.interpolate.

• factor will be an Integer/Float, tuple or list.

• minKerning will be a BaseKerning object.

• maxKerning will be a BaseKerning object.

94 Chapter 3. Developers

FontParts Documentation, Release 0.1

• round will be a bool indicating if the interpolated kerning should be rounded.

• suppressError will be a bool indicating if incompatible data should be ignored.

Subclasses may override this method.

BaseKerning._iter()
Subclasses may override this method.

BaseKerning._keys()
Subclasses may override this method.

BaseKerning._len()
Subclasses may override this method.

BaseKerning._pop(key, default=None)
Subclasses may override this method.

BaseKerning._round(multiple=1)
This is the environment implementation of BaseKerning.round. multiple will be an int.

Subclasses may override this method.

BaseKerning._scale(factor)
This is the environment implementation of BaseKerning.scaleBy . factor will be a tuple.

Subclasses may override this method.

BaseKerning._update(other)
Subclasses may override this method.

BaseKerning._values()
Subclasses may override this method.

Features

Must Override

BaseFeatures._get_text()
This is the environment implementation of BaseFeatures.text. This must return a String.

Subclasses must override this method.

BaseFeatures._set_text(value)
This is the environment implementation of BaseFeatures.text. value will be a String.

Subclasses must override this method.

May Override

BaseFeatures._init(*args, **kwargs)
Subclasses may override this method.

BaseFeatures.copyData(source)
Subclasses may override this method. If so, they should call the super.

3.1. Implementing FontParts 95

FontParts Documentation, Release 0.1

Lib

Must Override

BaseLib._contains(key)
Subclasses must override this method.

BaseLib._delItem(key)
Subclasses must override this method.

BaseLib._getItem(key)
Subclasses must override this method.

BaseLib._items()
Subclasses must override this method.

BaseLib._setItem(key, value)
Subclasses must override this method.

May Override

BaseLib._clear()
Subclasses may override this method.

BaseLib._get(key, default=None)
Subclasses may override this method.

BaseLib._init(*args, **kwargs)
Subclasses may override this method.

BaseLib._iter()
Subclasses may override this method.

BaseLib._keys()
Subclasses may override this method.

BaseLib._len()
Subclasses may override this method.

BaseLib._pop(key, default=None)
Subclasses may override this method.

BaseLib._update(other)
Subclasses may override this method.

BaseLib._values()
Subclasses may override this method.

Layer

Must Override

BaseLayer._getItem(name, **kwargs)
This is the environment implementation of BaseLayer.__getitem__ and BaseFont.__getitem__
This must return an instance of a BaseGlyph subclass. name will be a String representing a name of a glyph
that is in the layer. It will have been normalized with normalizers.normalizeGlyphName.

Subclasses must override this method.

96 Chapter 3. Developers

FontParts Documentation, Release 0.1

BaseLayer._get_color()
This is the environment implementation of BaseLayer.color. This must return a Color defining the color
assigned to the layer. If the layer does not have an assigned color, the returned value must be None. It will be
normalized with normalizers.normalizeColor.

Subclasses must override this method.

BaseLayer._get_lib()
This is the environment implementation of BaseLayer.lib. This must return an instance of a BaseLib
subclass.

BaseLayer._get_name()
This is the environment implementation of BaseLayer.name. This must return a String defining the name
of the layer. If the layer is the default layer, the returned value must be None. It will be normalized with
normalizers.normalizeLayerName.

Subclasses must override this method.

BaseLayer._keys(**kwargs)
This is the environment implementation of BaseLayer.keys and BaseFont.keys This must return an
Immutable List of the names representing all glyphs in the layer. The order is not defined.

Subclasses must override this method.

BaseLayer._newGlyph(name, **kwargs)
This is the environment implementation of BaseLayer.newGlyph and BaseFont.newGlyph This must
return an instance of a BaseGlyph subclass. name will be a String representing a glyph name. It will have
been normalized with normalizers.normalizeGlyphName. The name will have been tested to make
sure that no glyph with the same name exists in the layer.

Subclasses must override this method.

BaseLayer._removeGlyph(name, **kwargs)
This is the environment implementation of BaseLayer.removeGlyph and BaseFont.removeGlyph.
name will be a String representing a glyph name of a glyph that is in the layer. It will have been normalized
with normalizers.normalizeGlyphName. The newly created BaseGlyph must be returned.

Subclasses must override this method.

BaseLayer._set_color(value, **kwargs)
This is the environment implementation of BaseLayer.color. value will be a Color or None defining the
color to assign to the layer. It will have been normalized with normalizers.normalizeColor.

Subclasses must override this method.

BaseLayer._set_name(value, **kwargs)
This is the environment implementation of BaseLayer.name. value will be a String defining the name of the
layer. It will have been normalized with normalizers.normalizeLayerName. No layer with the same
name will exist.

Subclasses must override this method.

May Override

BaseLayer._autoUnicodes()
This is the environment implementation of BaseLayer.autoUnicodes.

Subclasses may override this method.

3.1. Implementing FontParts 97

FontParts Documentation, Release 0.1

BaseLayer._contains(name, **kwargs)
This is the environment implementation of BaseLayer.__contains__ and BaseFont.
__contains__ This must return bool indicating if the layer has a glyph with the defined name. name
will be a :ref-type-string‘ representing a glyph name. It will have been normalized with normalizers.
normalizeGlyphName.

Subclasses may override this method.

BaseLayer._init(*args, **kwargs)
Subclasses may override this method.

BaseLayer._insertGlyph(glyph, name, **kwargs)
This is the environment implementation of BaseLayer.__setitem__ and BaseFont.__setitem__.
This must return an instance of a BaseGlyph subclass. glyph will be a glyph object with the attributes
necessary for copying as defined in BaseGlyph.copy An environment must not insert glyph directly. Instead
the data from glyph should be copied to a new glyph instead. name will be a String representing a glyph name.
It will have been normalized with normalizers.normalizeGlyphName. name will have been tested to
make sure that no glyph with the same name exists in the layer.

Subclasses may override this method.

BaseLayer._interpolate(factor, minLayer, maxLayer, round=True, suppressError=True)
This is the environment implementation of BaseLayer.interpolate.

Subclasses may override this method.

BaseLayer._isCompatible(other, reporter)
This is the environment implementation of BaseLayer.isCompatible.

Subclasses may override this method.

BaseLayer._iter(**kwargs)
This is the environment implementation of BaseLayer.__iter__ and BaseFont.__iter__ This must
return an iterator that returns instances of a BaseGlyph subclass.

Subclasses may override this method.

BaseLayer._len(**kwargs)
This is the environment implementation of BaseLayer.__len__ and BaseFont.__len__ This must
return an int indicating the number of glyphs in the layer.

Subclasses may override this method.

BaseLayer._round()
This is the environment implementation of BaseLayer.round.

Subclasses may override this method.

Glyph

Must Override

BaseGlyph._addImage(data, transformation=None, color=None)
data will be raw, unnormalized image data. Each environment may have different possible formats, so this is
unspecified.

transformation will be a valid transformation matrix.

color will be a color tuple or None.

This must return an Image object. Assigning it to the glyph will be handled by the base class.

98 Chapter 3. Developers

FontParts Documentation, Release 0.1

Subclasses must override this method.

BaseGlyph._autoUnicodes()
Subclasses must override this method.

BaseGlyph._clearImage(**kwargs)
Subclasses must override this method.

BaseGlyph._getAnchor(index, **kwargs)
This must return a wrapped anchor.

index will be a valid index.

Subclasses must override this method.

BaseGlyph._getComponent(index, **kwargs)
This must return a wrapped component.

index will be a valid index.

Subclasses must override this method.

BaseGlyph._getContour(index, **kwargs)
This must return a wrapped contour.

index will be a valid index.

Subclasses must override this method.

BaseGlyph._getGuideline(index, **kwargs)
This must return a wrapped guideline.

index will be a valid index.

Subclasses must override this method.

BaseGlyph._get_height()
This must return an int or float.

Subclasses must override this method.

BaseGlyph._get_image()
Subclasses must override this method.

BaseGlyph._get_lib()
Subclasses must override this method.

BaseGlyph._get_markColor()
Return the mark color value as a color tuple or None.

Subclasses must override this method.

BaseGlyph._get_name()
Get the name of the glyph. This must return a unicode string.

Subclasses must override this method.

BaseGlyph._get_note()
Subclasses must override this method.

BaseGlyph._get_unicodes()
Get the unicodes assigned to the glyph. This must return a tuple of zero or more integers.

Subclasses must override this method.

3.1. Implementing FontParts 99

FontParts Documentation, Release 0.1

BaseGlyph._get_width()
This must return an int or float.

Subclasses must override this method.

BaseGlyph._lenAnchors(**kwargs)
This must return an integer indicating the number of anchors in the glyph.

Subclasses must override this method.

BaseGlyph._lenComponents(**kwargs)
This must return an integer indicating the number of components in the glyph.

Subclasses must override this method.

BaseGlyph._lenContours(**kwargs)
This must return an integer.

Subclasses must override this method.

BaseGlyph._lenGuidelines(**kwargs)
This must return an integer indicating the number of guidelines in the glyph.

Subclasses must override this method.

BaseGlyph._newLayer(name, **kwargs)
name will be a string representing a valid layer name. The name will have been tested to make sure that no layer
in the glyph already has the name.

This must returned the new glyph.

Subclasses must override this method.

BaseGlyph._removeAnchor(index, **kwargs)
index will be a valid index.

Subclasses must override this method.

BaseGlyph._removeComponent(index, **kwargs)
index will be a valid index.

Subclasses must override this method.

BaseGlyph._removeContour(index, **kwargs)
index will be a valid index.

Subclasses must override this method.

BaseGlyph._removeGuideline(index, **kwargs)
index will be a valid index.

Subclasses must override this method.

BaseGlyph._removeOverlap()
Subclasses must implement this method.

BaseGlyph._set_height(value)
value will be an int or float.

Subclasses must override this method.

BaseGlyph._set_markColor(value)
value will be a color tuple or None.

Subclasses must override this method.

100 Chapter 3. Developers

FontParts Documentation, Release 0.1

BaseGlyph._set_name(value)
Set the name of the glyph. This will be a unicode string.

Subclasses must override this method.

BaseGlyph._set_note(value)
Subclasses must override this method.

BaseGlyph._set_unicodes(value)
Assign the unicodes to the glyph. This will be a list of zero or more integers.

Subclasses must override this method.

BaseGlyph._set_width(value)
value will be an int or float.

Subclasses must override this method.

May Override

BaseGlyph.__add__(other)
Subclasses may override this method.

BaseGlyph.__div__(factor)
Subclasses may override this method.

BaseGlyph.__mul__(factor)
Subclasses may override this method.

BaseGlyph.__rmul__(factor)
Subclasses may override this method.

BaseGlyph.__sub__(other)
Subclasses may override this method.

BaseGlyph._appendAnchor(name, position=None, color=None, identifier=None, **kwargs)
name will be a valid anchor name. position will be a valid position (x, y). color will be None or a valid color.
identifier will be a valid, nonconflicting identifier.

This must return the new anchor.

Subclasses may override this method.

BaseGlyph._appendComponent(baseGlyph, transformation=None, identifier=None, **kwargs)
baseGlyph will be a valid glyph name. The baseGlyph may or may not be in the layer.

offset will be a valid offset (x, y). scale will be a valid scale (x, y). identifier will be a valid, nonconflicting
identifier.

This must return the new component.

Subclasses may override this method.

BaseGlyph._appendContour(contour, offset=None, **kwargs)
contour will be an object with a drawPoints method.

offset will be a valid offset (x, y).

This must return the new contour.

Subclasses may override this method.

BaseGlyph._appendGlyph(other, offset=None)
Subclasses may override this method.

3.1. Implementing FontParts 101

FontParts Documentation, Release 0.1

BaseGlyph._appendGuideline(position, angle, name=None, color=None, identifier=None,
**kwargs)

position will be a valid position (x, y). angle will be a valid angle. name will be a valid guideline name or None.
color will be a valid color or None . identifier will be a valid, nonconflicting identifier.

This must return the new guideline.

Subclasses may override this method.

BaseGlyph._clear(contours=True, components=True, anchors=True, guidelines=True, image=True)
Subclasses may override this method.

BaseGlyph._clearAnchors()
Subclasses may override this method.

BaseGlyph._clearComponents()
Subclasses may override this method.

BaseGlyph._clearContours()
Subclasses may override this method.

BaseGlyph._clearGuidelines()
Subclasses may override this method.

BaseGlyph._decompose()
Subclasses may override this method.

BaseGlyph._getLayer(name, **kwargs)
name will be a string, but there may not be a layer with a name matching the string. If not, a ValueError
must be raised.

Subclasses may override this method.

BaseGlyph._get_anchors()
Subclasses may override this method.

BaseGlyph._get_bottomMargin()
This must return an int or float. If the glyph has no outlines, this must return None.

Subclasses may override this method.

BaseGlyph._get_bounds()
Subclasses may override this method.

BaseGlyph._get_components()
Subclasses may override this method.

BaseGlyph._get_contours()
Subclasses may override this method.

BaseGlyph._get_guidelines()
Subclasses may override this method.

BaseGlyph._get_leftMargin()
This must return an int or float. If the glyph has no outlines, this must return None.

Subclasses may override this method.

BaseGlyph._get_rightMargin()
This must return an int or float. If the glyph has no outlines, this must return None.

Subclasses may override this method.

BaseGlyph._get_topMargin()
This must return an int or float. If the glyph has no outlines, this must return None.

102 Chapter 3. Developers

FontParts Documentation, Release 0.1

Subclasses may override this method.

BaseGlyph._get_unicode()
Get the primary unicode assigned to the glyph. This must return an integer or None.

Subclasses may override this method.

BaseGlyph._init(*args, **kwargs)
Subclasses may override this method.

BaseGlyph._interpolate(factor, minGlyph, maxGlyph, round=True, suppressError=True)
Subclasses may override this method.

BaseGlyph._isCompatible(other, reporter)
This is the environment implementation of BaseGlyph.isCompatible.

Subclasses may override this method.

BaseGlyph._iterContours(**kwargs)
This must return an iterator that returns wrapped contours.

Subclasses may override this method.

BaseGlyph._moveBy(value, **kwargs)
This is the environment implementation of BaseObject.moveBy.

value will be an iterable containing two Integer/Float values defining the x and y values to move the object by.
It will have been normalized with normalizers.normalizeTransformationOffset.

Subclasses may override this method.

BaseGlyph._pointInside(point)
Subclasses may override this method.

BaseGlyph._removeLayer(name, **kwargs)
name will be a valid layer name. It will represent an existing layer in the font.

Subclasses may override this method.

BaseGlyph._rotateBy(value, origin=None, **kwargs)
This is the environment implementation of BaseObject.rotateBy.

value will be a Integer/Float value defining the value to rotate the object by. It will have been normalized with
normalizers.normalizeRotationAngle. origin will be a Coordinate defining the point at which the
rotation should orginate.

Subclasses may override this method.

BaseGlyph._round()
Subclasses may override this method.

BaseGlyph._scaleBy(value, origin=None, **kwargs)
This is the environment implementation of BaseObject.scaleBy.

value will be an iterable containing two Integer/Float values defining the x and y values to scale the object by.
It will have been normalized with normalizers.normalizeTransformationScale. origin will be a
Coordinate defining the point at which the scale should orginate.

Subclasses may override this method.

BaseGlyph._set_bottomMargin(value)
value will be an int or float.

Subclasses may override this method.

3.1. Implementing FontParts 103

FontParts Documentation, Release 0.1

BaseGlyph._set_leftMargin(value)
value will be an int or float.

Subclasses may override this method.

BaseGlyph._set_rightMargin(value)
value will be an int or float.

Subclasses may override this method.

BaseGlyph._set_topMargin(value)
value will be an int or float.

Subclasses may override this method.

BaseGlyph._set_unicode(value)
Assign the primary unicode to the glyph. This will be an integer or None.

Subclasses may override this method.

BaseGlyph._skewBy(value, origin=None, **kwargs)
This is the environment implementation of BaseObject.skewBy.

value will be an iterable containing two Integer/Float values defining the x and y values to skew the object by. It
will have been normalized with normalizers.normalizeTransformationSkewAngle. origin will
be a Coordinate defining the point at which the skew should orginate.

Subclasses may override this method.

BaseGlyph._transformBy(matrix, **kwargs)
Subclasses may override this method.

Contour

Must Override

BaseContour._getPoint(index, **kwargs)
This must return a wrapped point.

index will be a valid index.

Subclasses must override this method.

BaseContour._get_clockwise()
Subclasses must override this method.

BaseContour._get_identifier()
This is the environment implementation of BaseObject.identifier. This must return an Identifier. If
the native object does not have an identifier assigned one should be assigned and returned.

Subclasses must override this method.

BaseContour._insertPoint(index, position, type=’line’, smooth=False, name=None, identifier=None,
**kwargs)

position will be a valid position (x, y). type will be a valid type. smooth will be a valid boolean. name will be
a valid name or None. identifier will be a valid identifier or None. The identifier will not have been tested for
uniqueness.

Subclasses must override this method.

BaseContour._lenPoints(**kwargs)
This must return an integer indicating the number of points in the contour.

104 Chapter 3. Developers

FontParts Documentation, Release 0.1

Subclasses must override this method.

BaseContour._removePoint(index, preserveCurve, **kwargs)
index will be a valid index. preserveCurve will be a boolean.

Subclasses must override this method.

BaseContour._set_index(value)
Subclasses must override this method.

May Override

BaseContour._appendBPoint(type, anchor, bcpIn=None, bcpOut=None, **kwargs)
Subclasses may override this method.

BaseContour._appendSegment(type=None, points=None, smooth=False, **kwargs)
Subclasses may override this method.

BaseContour._autoStartSegment(**kwargs)
Subclasses may override this method.

XXX port this from robofab

BaseContour._draw(pen, **kwargs)
Subclasses may override this method.

BaseContour._drawPoints(pen, **kwargs)
Subclasses may override this method.

BaseContour._get_bounds()
Subclasses may override this method.

BaseContour._get_index()
Subclasses may override this method.

BaseContour._get_points()
Subclasses may override this method.

BaseContour._get_segments()
Subclasses may override this method.

BaseContour._init(*args, **kwargs)
Subclasses may override this method.

BaseContour._insertBPoint(index, type, anchor, bcpIn, bcpOut, **kwargs)
Subclasses may override this method.

BaseContour._insertSegment(index=None, type=None, points=None, smooth=False, **kwargs)
Subclasses may override this method.

BaseContour._len__segments(**kwargs)
Subclasses may override this method.

BaseContour._moveBy(value, **kwargs)
This is the environment implementation of BaseObject.moveBy.

value will be an iterable containing two Integer/Float values defining the x and y values to move the object by.
It will have been normalized with normalizers.normalizeTransformationOffset.

Subclasses may override this method.

BaseContour._pointInside(point)
Subclasses may override this method.

3.1. Implementing FontParts 105

FontParts Documentation, Release 0.1

BaseContour._removeSegment(segment, preserveCurve, **kwargs)
segment will be a valid segment index. preserveCurve will be a boolean.

Subclasses may override this method.

BaseContour._reverse(**kwargs)
Subclasses may override this method.

BaseContour._rotateBy(value, origin=None, **kwargs)
This is the environment implementation of BaseObject.rotateBy.

value will be a Integer/Float value defining the value to rotate the object by. It will have been normalized with
normalizers.normalizeRotationAngle. origin will be a Coordinate defining the point at which the
rotation should orginate.

Subclasses may override this method.

BaseContour._round(**kwargs)
Subclasses may override this method.

BaseContour._scaleBy(value, origin=None, **kwargs)
This is the environment implementation of BaseObject.scaleBy.

value will be an iterable containing two Integer/Float values defining the x and y values to scale the object by.
It will have been normalized with normalizers.normalizeTransformationScale. origin will be a
Coordinate defining the point at which the scale should orginate.

Subclasses may override this method.

BaseContour._setStartSegment(segmentIndex, **kwargs)
Subclasses may override this method.

BaseContour._set_clockwise(value)
Subclasses may override this method.

BaseContour._skewBy(value, origin=None, **kwargs)
This is the environment implementation of BaseObject.skewBy.

value will be an iterable containing two Integer/Float values defining the x and y values to skew the object by. It
will have been normalized with normalizers.normalizeTransformationSkewAngle. origin will
be a Coordinate defining the point at which the skew should orginate.

Subclasses may override this method.

BaseContour._transformBy(matrix, **kwargs)
Subclasses may override this method.

Segment

Must Override

May Override

BaseSegment._getItem(index)
Subclasses may override this method.

BaseSegment._get_base_offCurve()
Subclasses may override this method.

BaseSegment._get_index()
Subclasses may override this method.

106 Chapter 3. Developers

FontParts Documentation, Release 0.1

BaseSegment._get_offCurve()
Subclasses may override this method.

BaseSegment._get_onCurve()
Subclasses may override this method.

BaseSegment._get_points()
Subclasses may override this method.

BaseSegment._get_smooth()
Subclasses may override this method.

BaseSegment._get_type()
Subclasses may override this method.

BaseSegment._init(*args, **kwargs)
Subclasses may override this method.

BaseSegment._iterPoints(**kwargs)
Subclasses may override this method.

BaseSegment._len(**kwargs)
Subclasses may override this method.

BaseSegment._moveBy(value, **kwargs)
This is the environment implementation of BaseObject.moveBy.

value will be an iterable containing two Integer/Float values defining the x and y values to move the object by.
It will have been normalized with normalizers.normalizeTransformationOffset.

Subclasses may override this method.

BaseSegment._rotateBy(value, origin=None, **kwargs)
This is the environment implementation of BaseObject.rotateBy.

value will be a Integer/Float value defining the value to rotate the object by. It will have been normalized with
normalizers.normalizeRotationAngle. origin will be a Coordinate defining the point at which the
rotation should orginate.

Subclasses may override this method.

BaseSegment._scaleBy(value, origin=None, **kwargs)
This is the environment implementation of BaseObject.scaleBy.

value will be an iterable containing two Integer/Float values defining the x and y values to scale the object by.
It will have been normalized with normalizers.normalizeTransformationScale. origin will be a
Coordinate defining the point at which the scale should orginate.

Subclasses may override this method.

BaseSegment._set_smooth(value)
Subclasses may override this method.

BaseSegment._set_type(newType)
Subclasses may override this method.

BaseSegment._skewBy(value, origin=None, **kwargs)
This is the environment implementation of BaseObject.skewBy.

value will be an iterable containing two Integer/Float values defining the x and y values to skew the object by. It
will have been normalized with normalizers.normalizeTransformationSkewAngle. origin will
be a Coordinate defining the point at which the skew should orginate.

Subclasses may override this method.

3.1. Implementing FontParts 107

FontParts Documentation, Release 0.1

BaseSegment._transformBy(matrix, **kwargs)
Subclasses may override this method.

BaseSegment.copyData(source)
Subclasses may override this method. If so, they should call the super.

BPoint

Must Override

May Override

BaseBPoint._get_anchor()
Subclasses may override this method.

BaseBPoint._get_bcpIn()
Subclasses may override this method.

BaseBPoint._get_bcpOut()
Subclasses may override this method.

BaseBPoint._get_index()
Subclasses may override this method.

BaseBPoint._get_type()
Subclasses may override this method.

BaseBPoint._init(*args, **kwargs)
Subclasses may override this method.

BaseBPoint._moveBy(value, **kwargs)
This is the environment implementation of BaseObject.moveBy.

value will be an iterable containing two Integer/Float values defining the x and y values to move the object by.
It will have been normalized with normalizers.normalizeTransformationOffset.

Subclasses may override this method.

BaseBPoint._rotateBy(value, origin=None, **kwargs)
This is the environment implementation of BaseObject.rotateBy.

value will be a Integer/Float value defining the value to rotate the object by. It will have been normalized with
normalizers.normalizeRotationAngle. origin will be a Coordinate defining the point at which the
rotation should orginate.

Subclasses may override this method.

BaseBPoint._scaleBy(value, origin=None, **kwargs)
This is the environment implementation of BaseObject.scaleBy.

value will be an iterable containing two Integer/Float values defining the x and y values to scale the object by.
It will have been normalized with normalizers.normalizeTransformationScale. origin will be a
Coordinate defining the point at which the scale should orginate.

Subclasses may override this method.

BaseBPoint._set_anchor(value)
Subclasses may override this method.

BaseBPoint._set_bcpIn(value)
Subclasses may override this method.

108 Chapter 3. Developers

FontParts Documentation, Release 0.1

BaseBPoint._set_bcpOut(value)
Subclasses may override this method.

BaseBPoint._set_type(value)
Subclasses may override this method.

BaseBPoint._skewBy(value, origin=None, **kwargs)
This is the environment implementation of BaseObject.skewBy.

value will be an iterable containing two Integer/Float values defining the x and y values to skew the object by. It
will have been normalized with normalizers.normalizeTransformationSkewAngle. origin will
be a Coordinate defining the point at which the skew should orginate.

Subclasses may override this method.

BaseBPoint._transformBy(matrix, **kwargs)
Subclasses may override this method.

BaseBPoint.copyData(source)
Subclasses may override this method. If so, they should call the super.

Point

Must Override

BasePoint._get_identifier()
This is the environment implementation of BaseObject.identifier. This must return an Identifier. If
the native object does not have an identifier assigned one should be assigned and returned.

Subclasses must override this method.

BasePoint._get_name()
This is the environment implementation of BasePoint.name. This must return a String or None. The
returned value will be normalized with normalizers.normalizePointName.

Subclasses must override this method.

BasePoint._get_smooth()
This is the environment implementation of BasePoint.smooth. This must return a bool indicating the
smooth state.

Subclasses must override this method.

BasePoint._get_type()
This is the environment implementation of BasePoint.type. This must return a String defining the point
type.

Subclasses must override this method.

BasePoint._get_x()
This is the environment implementation of BasePoint.x. This must return an Integer/Float.

Subclasses must override this method.

BasePoint._get_y()
This is the environment implementation of BasePoint.y . This must return an Integer/Float.

Subclasses must override this method.

BasePoint._set_name(value)
This is the environment implementation of BasePoint.name. value will be a String or None. It will have
been normalized with normalizers.normalizePointName.

3.1. Implementing FontParts 109

FontParts Documentation, Release 0.1

Subclasses must override this method.

BasePoint._set_smooth(value)
This is the environment implementation of BasePoint.smooth. value will be a bool indicating the smooth
state. It will have been normalized with normalizers.normalizeBoolean.

Subclasses must override this method.

BasePoint._set_type(value)
This is the environment implementation of BasePoint.type. value will be a String defining the point type.
It will have been normalized with normalizers.normalizePointType.

Subclasses must override this method.

BasePoint._set_x(value)
This is the environment implementation of BasePoint.x. value will be an Integer/Float.

Subclasses must override this method.

BasePoint._set_y(value)
This is the environment implementation of BasePoint.y . value will be an Integer/Float.

Subclasses must override this method.

May Override

BasePoint._get_index()
Get the point’s index. This must return an int.

Subclasses may override this method.

BasePoint._init(*args, **kwargs)
Subclasses may override this method.

BasePoint._moveBy(value, **kwargs)
This is the environment implementation of BaseObject.moveBy.

value will be an iterable containing two Integer/Float values defining the x and y values to move the object by.
It will have been normalized with normalizers.normalizeTransformationOffset.

Subclasses may override this method.

BasePoint._rotateBy(value, origin=None, **kwargs)
This is the environment implementation of BaseObject.rotateBy.

value will be a Integer/Float value defining the value to rotate the object by. It will have been normalized with
normalizers.normalizeRotationAngle. origin will be a Coordinate defining the point at which the
rotation should orginate.

Subclasses may override this method.

BasePoint._round(**kwargs)
This is the environment implementation of BasePoint.round.

Subclasses may override this method.

BasePoint._scaleBy(value, origin=None, **kwargs)
This is the environment implementation of BaseObject.scaleBy.

value will be an iterable containing two Integer/Float values defining the x and y values to scale the object by.
It will have been normalized with normalizers.normalizeTransformationScale. origin will be a
Coordinate defining the point at which the scale should orginate.

110 Chapter 3. Developers

FontParts Documentation, Release 0.1

Subclasses may override this method.

BasePoint._skewBy(value, origin=None, **kwargs)
This is the environment implementation of BaseObject.skewBy.

value will be an iterable containing two Integer/Float values defining the x and y values to skew the object by. It
will have been normalized with normalizers.normalizeTransformationSkewAngle. origin will
be a Coordinate defining the point at which the skew should orginate.

Subclasses may override this method.

BasePoint._transformBy(matrix, **kwargs)
This is the environment implementation of BasePoint.transformBy .

matrix will be a Transformation Matrix. that has been normalized with normalizers.
normalizeTransformationMatrix.

Subclasses may override this method.

BasePoint.copyData(source)
Subclasses may override this method. If so, they should call the super.

Component

Must Override

BaseComponent._decompose()
Subclasses must override this method.

BaseComponent._get_baseGlyph()
Subclasses must override this method.

BaseComponent._get_identifier()
This is the environment implementation of BaseObject.identifier. This must return an Identifier. If
the native object does not have an identifier assigned one should be assigned and returned.

Subclasses must override this method.

BaseComponent._get_transformation()
Subclasses must override this method.

BaseComponent._set_baseGlyph(value)
Subclasses must override this method.

BaseComponent._set_index(value)
Subclasses must override this method.

BaseComponent._set_transformation(value)
Subclasses must override this method.

May Override

BaseComponent._draw(pen, **kwargs)
Subclasses may override this method.

BaseComponent._drawPoints(pen, **kwargs)
Subclasses may override this method.

BaseComponent._get_bounds()
Subclasses may override this method.

3.1. Implementing FontParts 111

FontParts Documentation, Release 0.1

BaseComponent._get_index()
Subclasses may override this method.

BaseComponent._get_offset()
Subclasses may override this method.

BaseComponent._get_scale()
Subclasses may override this method.

BaseComponent._init(*args, **kwargs)
Subclasses may override this method.

BaseComponent._moveBy(value, **kwargs)
This is the environment implementation of BaseObject.moveBy.

value will be an iterable containing two Integer/Float values defining the x and y values to move the object by.
It will have been normalized with normalizers.normalizeTransformationOffset.

Subclasses may override this method.

BaseComponent._pointInside(point)
Subclasses may override this method.

BaseComponent._rotateBy(value, origin=None, **kwargs)
This is the environment implementation of BaseObject.rotateBy.

value will be a Integer/Float value defining the value to rotate the object by. It will have been normalized with
normalizers.normalizeRotationAngle. origin will be a Coordinate defining the point at which the
rotation should orginate.

Subclasses may override this method.

BaseComponent._round()
Subclasses may override this method.

BaseComponent._scaleBy(value, origin=None, **kwargs)
This is the environment implementation of BaseObject.scaleBy.

value will be an iterable containing two Integer/Float values defining the x and y values to scale the object by.
It will have been normalized with normalizers.normalizeTransformationScale. origin will be a
Coordinate defining the point at which the scale should orginate.

Subclasses may override this method.

BaseComponent._set_offset(value)
Subclasses may override this method.

BaseComponent._set_scale(value)
Subclasses may override this method.

BaseComponent._skewBy(value, origin=None, **kwargs)
This is the environment implementation of BaseObject.skewBy.

value will be an iterable containing two Integer/Float values defining the x and y values to skew the object by. It
will have been normalized with normalizers.normalizeTransformationSkewAngle. origin will
be a Coordinate defining the point at which the skew should orginate.

Subclasses may override this method.

BaseComponent._transformBy(matrix, **kwargs)
Subclasses may override this method.

BaseComponent.copyData(source)
Subclasses may override this method. If so, they should call the super.

112 Chapter 3. Developers

FontParts Documentation, Release 0.1

Anchor

Must Override

BaseAnchor._get_color()
This is the environment implementation of BaseAnchor.color. This must return a Color or None. The
returned value will be normalized with normalizers.normalizeColor.

Subclasses must override this method.

BaseAnchor._get_identifier()
This is the environment implementation of BaseObject.identifier. This must return an Identifier. If
the native object does not have an identifier assigned one should be assigned and returned.

Subclasses must override this method.

BaseAnchor._get_name()
This is the environment implementation of BaseAnchor.name. This must return a String or None. The
returned value will be normalized with normalizers.normalizeAnchorName.

Subclasses must override this method.

BaseAnchor._get_x()
This is the environment implementation of BaseAnchor.x. This must return an Integer/Float.

Subclasses must override this method.

BaseAnchor._get_y()
This is the environment implementation of BaseAnchor.y . This must return an Integer/Float.

Subclasses must override this method.

BaseAnchor._set_color(value)
This is the environment implementation of BaseAnchor.color. value will be a Color or None. It will have
been normalized with normalizers.normalizeColor.

Subclasses must override this method.

BaseAnchor._set_name(value)
This is the environment implementation of BaseAnchor.name. value will be a String or None. It will have
been normalized with normalizers.normalizeAnchorName.

Subclasses must override this method.

BaseAnchor._set_x(value)
This is the environment implementation of BaseAnchor.x. value will be an Integer/Float.

Subclasses must override this method.

BaseAnchor._set_y(value)
This is the environment implementation of BaseAnchor.y . value will be an Integer/Float.

Subclasses must override this method.

May Override

BaseAnchor._init(*args, **kwargs)
Subclasses may override this method.

BaseAnchor._moveBy(value, **kwargs)
This is the environment implementation of BaseObject.moveBy.

3.1. Implementing FontParts 113

FontParts Documentation, Release 0.1

value will be an iterable containing two Integer/Float values defining the x and y values to move the object by.
It will have been normalized with normalizers.normalizeTransformationOffset.

Subclasses may override this method.

BaseAnchor._rotateBy(value, origin=None, **kwargs)
This is the environment implementation of BaseObject.rotateBy.

value will be a Integer/Float value defining the value to rotate the object by. It will have been normalized with
normalizers.normalizeRotationAngle. origin will be a Coordinate defining the point at which the
rotation should orginate.

Subclasses may override this method.

BaseAnchor._scaleBy(value, origin=None, **kwargs)
This is the environment implementation of BaseObject.scaleBy.

value will be an iterable containing two Integer/Float values defining the x and y values to scale the object by.
It will have been normalized with normalizers.normalizeTransformationScale. origin will be a
Coordinate defining the point at which the scale should orginate.

Subclasses may override this method.

BaseAnchor._skewBy(value, origin=None, **kwargs)
This is the environment implementation of BaseObject.skewBy.

value will be an iterable containing two Integer/Float values defining the x and y values to skew the object by. It
will have been normalized with normalizers.normalizeTransformationSkewAngle. origin will
be a Coordinate defining the point at which the skew should orginate.

Subclasses may override this method.

BaseAnchor._transformBy(matrix, **kwargs)
This is the environment implementation of BaseAnchor.transformBy .

matrix will be a Transformation Matrix. that has been normalized with normalizers.
normalizeTransformationMatrix.

Subclasses may override this method.

BaseAnchor.copyData(source)
Subclasses may override this method. If so, they should call the super.

Guideline

Must Override

BaseGuideline._get_angle()
This is the environment implementation of BaseGuideline.angle. This must return an Angle.

Subclasses must override this method.

BaseGuideline._get_color()
This is the environment implementation of BaseGuideline.color. This must return a Color or None.
The returned value will be normalized with normalizers.normalizeColor.

Subclasses must override this method.

BaseGuideline._get_identifier()
This is the environment implementation of BaseObject.identifier. This must return an Identifier. If
the native object does not have an identifier assigned one should be assigned and returned.

114 Chapter 3. Developers

FontParts Documentation, Release 0.1

Subclasses must override this method.

BaseGuideline._get_name()
This is the environment implementation of BaseGuideline.name. This must return a String or None. The
returned value will be normalized with normalizers.normalizeGuidelineName.

Subclasses must override this method.

BaseGuideline._get_x()
This is the environment implementation of BaseGuideline.x. This must return an Integer/Float.

Subclasses must override this method.

BaseGuideline._get_y()
This is the environment implementation of BaseGuideline.y . This must return an Integer/Float.

Subclasses must override this method.

BaseGuideline._set_angle(value)
This is the environment implementation of BaseGuideline.angle. value will be an Angle.

Subclasses must override this method.

BaseGuideline._set_color(value)
This is the environment implementation of BaseGuideline.color. value will be a Color or None. It will
have been normalized with normalizers.normalizeColor.

Subclasses must override this method.

BaseGuideline._set_name(value)
This is the environment implementation of BaseGuideline.name. value will be a String or None. It will
have been normalized with normalizers.normalizeGuidelineName.

Subclasses must override this method.

BaseGuideline._set_x(value)
This is the environment implementation of BaseGuideline.x. value will be an Integer/Float.

Subclasses must override this method.

BaseGuideline._set_y(value)
This is the environment implementation of BaseGuideline.y . value will be an Integer/Float.

Subclasses must override this method.

May Override

BaseGuideline._get_index()
Get the guideline’s index. This must return an int.

Subclasses may override this method.

BaseGuideline._init(*args, **kwargs)
Subclasses may override this method.

BaseGuideline._moveBy(value, **kwargs)
This is the environment implementation of BaseObject.moveBy.

value will be an iterable containing two Integer/Float values defining the x and y values to move the object by.
It will have been normalized with normalizers.normalizeTransformationOffset.

Subclasses may override this method.

3.1. Implementing FontParts 115

FontParts Documentation, Release 0.1

BaseGuideline._rotateBy(value, origin=None, **kwargs)
This is the environment implementation of BaseObject.rotateBy.

value will be a Integer/Float value defining the value to rotate the object by. It will have been normalized with
normalizers.normalizeRotationAngle. origin will be a Coordinate defining the point at which the
rotation should orginate.

Subclasses may override this method.

BaseGuideline._round(**kwargs)
This is the environment implementation of BaseGuideline.round.

Subclasses may override this method.

BaseGuideline._scaleBy(value, origin=None, **kwargs)
This is the environment implementation of BaseObject.scaleBy.

value will be an iterable containing two Integer/Float values defining the x and y values to scale the object by.
It will have been normalized with normalizers.normalizeTransformationScale. origin will be a
Coordinate defining the point at which the scale should orginate.

Subclasses may override this method.

BaseGuideline._skewBy(value, origin=None, **kwargs)
This is the environment implementation of BaseObject.skewBy.

value will be an iterable containing two Integer/Float values defining the x and y values to skew the object by. It
will have been normalized with normalizers.normalizeTransformationSkewAngle. origin will
be a Coordinate defining the point at which the skew should orginate.

Subclasses may override this method.

BaseGuideline._transformBy(matrix, **kwargs)
This is the environment implementation of BaseGuideline.transformBy .

matrix will be a Transformation Matrix. that has been normalized with normalizers.
normalizeTransformationMatrix.

Subclasses may override this method.

BaseGuideline.copyData(source)
Subclasses may override this method. If so, they should call the super.

Image

Must Override

BaseImage._get_color()
Return the color value as a color tuple or None.

Subclasses must override this method.

BaseImage._get_data()
This must return raw byte data.

Subclasses must override this method.

BaseImage._get_transformation()
Subclasses must override this method.

BaseImage._set_color(value)
value will be a color tuple or None.

116 Chapter 3. Developers

FontParts Documentation, Release 0.1

Subclasses must override this method.

BaseImage._set_data(value)
value will be raw byte data.

Subclasses must override this method.

BaseImage._set_transformation(value)
Subclasses must override this method.

May Override

BaseImage._get_offset()
Subclasses may override this method.

BaseImage._get_scale()
Subclasses may override this method.

BaseImage._init(*args, **kwargs)
Subclasses may override this method.

BaseImage._moveBy(value, **kwargs)
This is the environment implementation of BaseObject.moveBy.

value will be an iterable containing two Integer/Float values defining the x and y values to move the object by.
It will have been normalized with normalizers.normalizeTransformationOffset.

Subclasses may override this method.

BaseImage._rotateBy(value, origin=None, **kwargs)
This is the environment implementation of BaseObject.rotateBy.

value will be a Integer/Float value defining the value to rotate the object by. It will have been normalized with
normalizers.normalizeRotationAngle. origin will be a Coordinate defining the point at which the
rotation should orginate.

Subclasses may override this method.

BaseImage._round()
Subclasses may override this method.

BaseImage._scaleBy(value, origin=None, **kwargs)
This is the environment implementation of BaseObject.scaleBy.

value will be an iterable containing two Integer/Float values defining the x and y values to scale the object by.
It will have been normalized with normalizers.normalizeTransformationScale. origin will be a
Coordinate defining the point at which the scale should orginate.

Subclasses may override this method.

BaseImage._set_offset(value)
Subclasses may override this method.

BaseImage._set_scale(value)
Subclasses may override this method.

BaseImage._skewBy(value, origin=None, **kwargs)
This is the environment implementation of BaseObject.skewBy.

value will be an iterable containing two Integer/Float values defining the x and y values to skew the object by. It
will have been normalized with normalizers.normalizeTransformationSkewAngle. origin will
be a Coordinate defining the point at which the skew should orginate.

3.1. Implementing FontParts 117

FontParts Documentation, Release 0.1

Subclasses may override this method.

BaseImage._transformBy(matrix, **kwargs)
Subclasses may override this method.

BaseImage.copyData(source)
Subclasses may override this method. If so, they should call the super.

Each of these require their own specific environment overrides, but the general structure follows this form:

from fontParts.base import BaseSomething

class MySomething(BaseSomething):

Initialization.
This will be called when objects are initialized.
The behavior, args and kwargs may be designed by the
subclass to implement specific behaviors.

def _init(self, myObj):
self.myObj = myObj

Comparison.
The __eq__ method must be implemented by subclasses.
It must return a boolean indicating if the lower level
objects are the same object. This does not mean that two
objects that have the same content should be considered
equal. It means that the object must be the same. The
corrilary __ne__ is optional to define.
#
Note that the base implentation of fontParts provides
__eq__ and __ne__ methods that test the naked objects
for equality. Depending on environmental needs this can
be overridden.

def __eq__(self, other):
return self.myObj == other.myObj

def __ne__(self, other):
return self.myObj != other.myObj

Properties.
Properties are get and set through standard method names.
Within these methods, the subclass may do whatever is
necessary to get/set the value from/to the environment.

def _get_something(self):
return self.myObj.getSomething()

def _set_something(self, value):
self.myObj.setSomething(value)

Methods.
Generally, the public methods call internal methods with
the same name, but preceded with an underscore. Subclasses
may implement the internal method. Any values passed to
the internal methods will have been normalized and will
be a standard type.

(continues on next page)

118 Chapter 3. Developers

FontParts Documentation, Release 0.1

(continued from previous page)

def _whatever(self, value):
self.myObj.doWhatever(value)

Copying.
Copying is handled in most cases by the base objects.
If subclasses have a special class that should be used
when creating a copy of an object, the class must be
defined with the copyClass attribute. If anything special
needs to be done during the copying process, the subclass
can implement the copyData method. This method will be
called automatically. The subclass must call the base class
method with super.

copyClass = MyObjectWithoutUI

def copyData(self, source):
super(MySomething, self).copyData(source)
self.myObj.internalThing = source.internalThing

Environment updating.
If the environment requires the scripter to manually
notify the environment that the object has been changed,
the subclass must implement the changed method. Please
try to avoid requiring this.

def changed(self):
myEnv.goUpdateYourself()

Wrapped objects.
It is very useful for scripters to have access to the
lower level, wrapped object. Subclasses implement this
with the naked method.

def naked(self):
return self.myObj

All methods that must be overridden are labeled with “Subclasses must override this method.” in the method’s docu-
mentation string. If a method may optionally be overridden, the documentation string is labeled with “Subclasses may
override this method.” All other methods, attributes and properties must not be overridden.

An example implementation that wraps the defcon library with fontParts is located in fontParts/objects/fontshell.

Data Normalization

When possible, incoming and outgoing values are checked for type validity and are coerced to a common type for
return. This is done with a set of functions located here:

These are done in a central place rather than within the objects for consitency. There are many cases where a (x,
y) tuple is defined and than rewriting all of the code to check if there are exactly two values, that each is an int
or a float and so on before finally making sure that the value to be returned is a tuple not an instance of list,
OrderedDict or some native object we consolidate the code into a single function and call that.

3.1. Implementing FontParts 119

FontParts Documentation, Release 0.1

Environment Specific Methods, Attributes and Arguments

FontParts is designed to be environment agnostic. Therefore, it is a 100% certainty that it doesn’t do something that
your environment does. You will want to allow your environment’s something to be accessible through FontParts. We
want you to allow this, too. The problem is, how do you implement something in a way that doesn’t conflict with
current or future things in FontParts? For example, let’s say that you want to add a support for the “Do Something to
the Font” feature you have built in your environment. You add a new method to support this:

class MyFont(BaseFont):

def doSomething(self, skip=None, double=None):
go

This will work. However, if FontParts adds a doSomething method in a later version that does something other than
what or accepts different arguments than your method does, it’s not going to work. Either the doSomething method
will have to be changed in your implementation or you will not support the FontParts doSomething method. This
is going to be lead to you being mad at FontParts, your scripters being mad at you or something else unpleasant.

The solution to this problem is to prevent it from happening in the first place. To do this, environment specific
methods, proprties and attributes must be prefixed with an environment specific tag followed by an _ and then your
method name. For example:

class MyFont(BaseFont):

def myapp_doSomething(self, skip=None, double=None):
go

This applies to any method, attribute or property additions to the FontParts objects. The environment tag is up to you.
The only requirement is that it needs to be unique to your own environment.

Method Arguments

In some cases, you are likely to discover that your environment supports specific options in a method that are not
supported by the environment agnostic API. For example, your environment may have an optional heuristic that can
be used in the font.autoUnicodes method. However, the font.autoUnicodes method does not have a
useHeuristics argument. Unfortunately, Python doesn’t offer a way to handle this in a way that is both flexible
for developers and friendly for scripters. The only two options for handling this are:

1. Create an environment specific clone of the font.autoUnicodes method as myapp_autoUnicodes and
add your useHeuristics argument there.

2. Contact the FontParts developers by opening a GitHub issue requesting support for your argument. If it is
generic enough, we may add support for it.

We’re experimenting with a third way to handle this. You can see it as the **environmentOptions argument
in the BaseFont.generate method. This may or may not move to other methods. Please contact us if you are
interested in this being applied to other methods.

3.1.3 Layers

There are two primary layer models in the font world:

• font level layers: In this model, all glyphs have the same layers. A good example of this is a chromatic font.

• glyph level layers: In this model, individual glyphs may have their own unique layers.

fontParts supports both of these models. Both fonts and glyphs have fully developed layer APIs:

120 Chapter 3. Developers

FontParts Documentation, Release 0.1

font = CurrentFont()
foregroundLayer = font.getLayer("foreground")
backgroundLayer = font.getLayer("background")

glyph = font["A"]
foregroundGlyph = glyph.getLayer("foreground")
backgroundGlyph = glyph.getLayer("background")

A font-level layer is a font-like object. Essentially, a layer has the same glyph management behavior as a font:

font = CurrentFont()
foreground = font.getLayer("foreground")
glyph = foreground.newGlyph("A")

A glyph-level layer is identical to a glyph object:

font = CurrentFont()
glyph = font["A"]
foreground = glyph.getLayer("foreground")
background = glyph.getLayer("background")

When a scripter is addressing a font or glyph without specifying a specific layer, the action is performed on the “de-
fault” (or primary) layer. For example, in the original Fontographer there were two layers: foreground and background.
The foreground was the primary layer and it contained the primary data that would be compiled into a font binary. In
multi-layered glyph editing environments, designers can specify which layer should be considered primary. This layer
is the “default” layer in fontParts. Thus:

font = CurrentFont()
glyph1 = font["A"]
glyph2 = font.newGlyph("B")

The glyph1 object will reference the A’s “foreground” layer and the “foreground” layer will contain a new glyph named
“B”.

fontParts delegates the implementation to the environment subclasses. Given that an environment can only support
font-level layers or glyph-level layers, the following algorithms can be used to simulate the model that the environment
doesn’t support.

Simulating glyph-level layers.

1. Get the parent font.

2. Iterate through all of the font’s layers.

3. If the glyph’s name is in the layer, grab the glyph from the layer.

4. Return all found glyphs.

Simulating font-level layers.

1. Iterate over all glyphs.

2. For every layer in the glyph, create a global mapping of layer name to glyphs containing a layer with the same
name.

3.1. Implementing FontParts 121

FontParts Documentation, Release 0.1

3.2 Developing FontParts

You want to help with developing FontParts? Yay!

We are mostly focused on documenting the objects and building a test suite. We’ll eventually need bits of code here
and there. If you have an idea for a new API or want to discuss one of the testing APIs, cool.

3.2.1 Proposals

Want to suggest a new font part for FontParts? It’s best to do this as an issue on the FontParts GitHub repository.
Please present why you think this needs to be added. Before you do so, please make sure you understand the goals of
the project, the existing API and so on.

3.2.2 Bug Reports

Notice a bug when using FontParts? Is it a bug in a specific application? If so, please report the bug to the application
developer. If it’s not specific to a particular application, please open an issue on GitHub or, if you really can’t open an
issue on GitHub, send a message to the RoboFab mailing list

3.2.3 Coding

Take a look at the open issues and see if there is anything there that you want to work on. Please try to follow the
general coding style of the library so that everything has the same level of readability.

This library follows much of PEP8, with a couple of exceptions. You’ll see camelCase. We like camelCase. The
standard line length is also 90 characters. If possible, try to keep lines to 80, but 90 comes in handy occasionally.
You’ll also notice that some builtin names are redefined in as variables in methods. It’s impossible not to use type in
a package dealing with fonts.

3.2.4 Writing Documentation

We really need help with adding the formatted documentation strings to the base objects. The API documentation is
generated from those. Here’s a style guide. Please look at the Documentation project on GitHub and see if there is
anything you want to work on. If there is, ask to be assigned to that issue, and then follow the style guide. A good
place to look for examples of the object documentation is the glyph object.

3.2.5 Test Suite

We also really need help in finishing up the test suite. You can see what needs to be done in the Tests project on
GitHub. Pick something you want to write tests for and ask to be assigned to that issue. More information about
writing tests is here.

122 Chapter 3. Developers

http://github.com/robofab-developers/fontParts/issues
https://github.com/robofab-developers/fontParts/issues
https://github.com/robofab-developers/fontParts/issues
https://groups.google.com/forum/#!forum/robofab
https://github.com/robofab-developers/fontParts/issues
https://github.com/robofab-developers/fontParts/projects/2
https://github.com/robofab-developers/fontParts/blob/master/Lib/fontParts/base/glyph.py
https://github.com/robofab-developers/fontParts/projects/1

Python Module Index

f
fontParts.base, 55
fontParts.world, 82

123

FontParts Documentation, Release 0.1

124 Python Module Index

Index

Symbols
__add__() (fontParts.base.BaseGlyph method), 101
__contains__() (fontParts.base.BaseFont method),

8
__contains__() (fontParts.base.BaseGroups

method), 16
__contains__() (fontParts.base.BaseKerning

method), 21
__contains__() (fontParts.base.BaseLayer method),

30
__contains__() (fontParts.base.BaseLib method),

26
__delitem__() (fontParts.base.BaseGroups method),

16
__delitem__() (fontParts.base.BaseKerning

method), 22
__delitem__() (fontParts.base.BaseLib method), 27
__div__() (fontParts.base.BaseGlyph method), 101
__getitem__() (fontParts.base.BaseContour

method), 53
__getitem__() (fontParts.base.BaseFont method), 9
__getitem__() (fontParts.base.BaseGlyph method),

43
__getitem__() (fontParts.base.BaseGroups method),

16
__getitem__() (fontParts.base.BaseKerning

method), 21
__getitem__() (fontParts.base.BaseLayer method),

30
__getitem__() (fontParts.base.BaseLib method), 26
__iter__() (fontParts.base.BaseContour method), 53
__iter__() (fontParts.base.BaseFont method), 8
__iter__() (fontParts.base.BaseGlyph method), 43
__iter__() (fontParts.base.BaseGroups method), 16
__iter__() (fontParts.base.BaseKerning method), 22
__iter__() (fontParts.base.BaseLayer method), 30
__iter__() (fontParts.base.BaseLib method), 27
__len__() (fontParts.base.BaseContour method), 53
__len__() (fontParts.base.BaseFont method), 8

__len__() (fontParts.base.BaseGlyph method), 43
__len__() (fontParts.base.BaseGroups method), 16
__len__() (fontParts.base.BaseKerning method), 20
__len__() (fontParts.base.BaseLayer method), 30
__len__() (fontParts.base.BaseLib method), 25
__mul__() (fontParts.base.BaseGlyph method), 101
__rmul__() (fontParts.base.BaseGlyph method), 101
__setitem__() (fontParts.base.BaseGroups method),

17
__setitem__() (fontParts.base.BaseKerning

method), 21
__setitem__() (fontParts.base.BaseLib method), 26
__sub__() (fontParts.base.BaseGlyph method), 101
_addImage() (fontParts.base.BaseGlyph method), 98
_appendAnchor() (fontParts.base.BaseGlyph

method), 101
_appendBPoint() (fontParts.base.BaseContour

method), 105
_appendComponent() (fontParts.base.BaseGlyph

method), 101
_appendContour() (fontParts.base.BaseGlyph

method), 101
_appendGlyph() (fontParts.base.BaseGlyph

method), 101
_appendGuideline() (fontParts.base.BaseFont

method), 91
_appendGuideline() (fontParts.base.BaseGlyph

method), 101
_appendSegment() (fontParts.base.BaseContour

method), 105
_autoStartSegment() (font-

Parts.base.BaseContour method), 105
_autoUnicodes() (fontParts.base.BaseFont method),

91
_autoUnicodes() (fontParts.base.BaseGlyph

method), 99
_autoUnicodes() (fontParts.base.BaseLayer

method), 97
_clear() (fontParts.base.BaseGlyph method), 102
_clear() (fontParts.base.BaseGroups method), 93

125

FontParts Documentation, Release 0.1

_clear() (fontParts.base.BaseKerning method), 94
_clear() (fontParts.base.BaseLib method), 96
_clearAnchors() (fontParts.base.BaseGlyph

method), 102
_clearComponents() (fontParts.base.BaseGlyph

method), 102
_clearContours() (fontParts.base.BaseGlyph

method), 102
_clearGuidelines() (fontParts.base.BaseFont

method), 91
_clearGuidelines() (fontParts.base.BaseGlyph

method), 102
_clearImage() (fontParts.base.BaseGlyph method),

99
_close() (fontParts.base.BaseFont method), 88
_contains() (fontParts.base.BaseFont method), 91
_contains() (fontParts.base.BaseGroups method), 93
_contains() (fontParts.base.BaseKerning method),

94
_contains() (fontParts.base.BaseLayer method), 97
_contains() (fontParts.base.BaseLib method), 96
_decompose() (fontParts.base.BaseComponent

method), 111
_decompose() (fontParts.base.BaseGlyph method),

102
_delItem() (fontParts.base.BaseGroups method), 93
_delItem() (fontParts.base.BaseKerning method), 94
_delItem() (fontParts.base.BaseLib method), 96
_draw() (fontParts.base.BaseComponent method), 111
_draw() (fontParts.base.BaseContour method), 105
_drawPoints() (fontParts.base.BaseComponent

method), 111
_drawPoints() (fontParts.base.BaseContour

method), 105
_findGlyph() (fontParts.base.BaseGroups method),

93
_generate() (fontParts.base.BaseFont method), 88
_get() (fontParts.base.BaseGroups method), 93
_get() (fontParts.base.BaseKerning method), 94
_get() (fontParts.base.BaseLib method), 96
_getAnchor() (fontParts.base.BaseGlyph method),

99
_getAttr() (fontParts.base.BaseInfo method), 93
_getComponent() (fontParts.base.BaseGlyph

method), 99
_getContour() (fontParts.base.BaseGlyph method),

99
_getGuideline() (fontParts.base.BaseFont method),

89
_getGuideline() (fontParts.base.BaseGlyph

method), 99
_getItem() (fontParts.base.BaseFont method), 91
_getItem() (fontParts.base.BaseGroups method), 93
_getItem() (fontParts.base.BaseKerning method), 94

_getItem() (fontParts.base.BaseLayer method), 96
_getItem() (fontParts.base.BaseLib method), 96
_getItem() (fontParts.base.BaseSegment method),

106
_getLayer() (fontParts.base.BaseFont method), 91
_getLayer() (fontParts.base.BaseGlyph method), 102
_getPoint() (fontParts.base.BaseContour method),

104
_get_anchor() (fontParts.base.BaseBPoint method),

108
_get_anchors() (fontParts.base.BaseGlyph

method), 102
_get_angle() (fontParts.base.BaseGuideline

method), 114
_get_baseGlyph() (fontParts.base.BaseComponent

method), 111
_get_base_offCurve() (font-

Parts.base.BaseSegment method), 106
_get_bcpIn() (fontParts.base.BaseBPoint method),

108
_get_bcpOut() (fontParts.base.BaseBPoint method),

108
_get_bottomMargin() (fontParts.base.BaseGlyph

method), 102
_get_bounds() (fontParts.base.BaseComponent

method), 111
_get_bounds() (fontParts.base.BaseContour

method), 105
_get_bounds() (fontParts.base.BaseGlyph method),

102
_get_clockwise() (fontParts.base.BaseContour

method), 104
_get_color() (fontParts.base.BaseAnchor method),

113
_get_color() (fontParts.base.BaseGuideline

method), 114
_get_color() (fontParts.base.BaseImage method),

116
_get_color() (fontParts.base.BaseLayer method), 96
_get_components() (fontParts.base.BaseGlyph

method), 102
_get_contours() (fontParts.base.BaseGlyph

method), 102
_get_data() (fontParts.base.BaseImage method), 116
_get_defaultLayer() (fontParts.base.BaseFont

method), 89
_get_features() (fontParts.base.BaseFont method),

89
_get_glyphOrder() (fontParts.base.BaseFont

method), 89
_get_groups() (fontParts.base.BaseFont method), 89
_get_guidelines() (fontParts.base.BaseFont

method), 91
_get_guidelines() (fontParts.base.BaseGlyph

126 Index

FontParts Documentation, Release 0.1

method), 102
_get_height() (fontParts.base.BaseGlyph method),

99
_get_identifier() (fontParts.base.BaseAnchor

method), 113
_get_identifier() (font-

Parts.base.BaseComponent method), 111
_get_identifier() (fontParts.base.BaseContour

method), 104
_get_identifier() (fontParts.base.BaseGuideline

method), 114
_get_identifier() (fontParts.base.BasePoint

method), 109
_get_image() (fontParts.base.BaseGlyph method),

99
_get_index() (fontParts.base.BaseBPoint method),

108
_get_index() (fontParts.base.BaseComponent

method), 111
_get_index() (fontParts.base.BaseContour method),

105
_get_index() (fontParts.base.BaseGuideline

method), 115
_get_index() (fontParts.base.BasePoint method),

110
_get_index() (fontParts.base.BaseSegment method),

106
_get_info() (fontParts.base.BaseFont method), 89
_get_kerning() (fontParts.base.BaseFont method),

89
_get_layerOrder() (fontParts.base.BaseFont

method), 89
_get_layers() (fontParts.base.BaseFont method), 89
_get_leftMargin() (fontParts.base.BaseGlyph

method), 102
_get_lib() (fontParts.base.BaseFont method), 89
_get_lib() (fontParts.base.BaseGlyph method), 99
_get_lib() (fontParts.base.BaseLayer method), 97
_get_markColor() (fontParts.base.BaseGlyph

method), 99
_get_name() (fontParts.base.BaseAnchor method),

113
_get_name() (fontParts.base.BaseGlyph method), 99
_get_name() (fontParts.base.BaseGuideline method),

115
_get_name() (fontParts.base.BaseLayer method), 97
_get_name() (fontParts.base.BasePoint method), 109
_get_note() (fontParts.base.BaseGlyph method), 99
_get_offCurve() (fontParts.base.BaseSegment

method), 106
_get_offset() (fontParts.base.BaseComponent

method), 112
_get_offset() (fontParts.base.BaseImage method),

117

_get_onCurve() (fontParts.base.BaseSegment
method), 107

_get_path() (fontParts.base.BaseFont method), 90
_get_points() (fontParts.base.BaseContour

method), 105
_get_points() (fontParts.base.BaseSegment

method), 107
_get_rightMargin() (fontParts.base.BaseGlyph

method), 102
_get_scale() (fontParts.base.BaseComponent

method), 112
_get_scale() (fontParts.base.BaseImage method),

117
_get_segments() (fontParts.base.BaseContour

method), 105
_get_smooth() (fontParts.base.BasePoint method),

109
_get_smooth() (fontParts.base.BaseSegment

method), 107
_get_text() (fontParts.base.BaseFeatures method),

95
_get_topMargin() (fontParts.base.BaseGlyph

method), 102
_get_transformation() (font-

Parts.base.BaseComponent method), 111
_get_transformation() (font-

Parts.base.BaseImage method), 116
_get_type() (fontParts.base.BaseBPoint method),

108
_get_type() (fontParts.base.BasePoint method), 109
_get_type() (fontParts.base.BaseSegment method),

107
_get_unicode() (fontParts.base.BaseGlyph

method), 103
_get_unicodes() (fontParts.base.BaseGlyph

method), 99
_get_width() (fontParts.base.BaseGlyph method),

99
_get_x() (fontParts.base.BaseAnchor method), 113
_get_x() (fontParts.base.BaseGuideline method), 115
_get_x() (fontParts.base.BasePoint method), 109
_get_y() (fontParts.base.BaseAnchor method), 113
_get_y() (fontParts.base.BaseGuideline method), 115
_get_y() (fontParts.base.BasePoint method), 109
_init() (fontParts.base.BaseAnchor method), 113
_init() (fontParts.base.BaseBPoint method), 108
_init() (fontParts.base.BaseComponent method), 112
_init() (fontParts.base.BaseContour method), 105
_init() (fontParts.base.BaseFeatures method), 95
_init() (fontParts.base.BaseFont method), 90
_init() (fontParts.base.BaseGlyph method), 103
_init() (fontParts.base.BaseGroups method), 93
_init() (fontParts.base.BaseGuideline method), 115
_init() (fontParts.base.BaseImage method), 117

Index 127

FontParts Documentation, Release 0.1

_init() (fontParts.base.BaseInfo method), 93
_init() (fontParts.base.BaseKerning method), 94
_init() (fontParts.base.BaseLayer method), 98
_init() (fontParts.base.BaseLib method), 96
_init() (fontParts.base.BasePoint method), 110
_init() (fontParts.base.BaseSegment method), 107
_insertBPoint() (fontParts.base.BaseContour

method), 105
_insertGlyph() (fontParts.base.BaseFont method),

91
_insertGlyph() (fontParts.base.BaseLayer method),

98
_insertPoint() (fontParts.base.BaseContour

method), 104
_insertSegment() (fontParts.base.BaseContour

method), 105
_interpolate() (fontParts.base.BaseFont method),

92
_interpolate() (fontParts.base.BaseGlyph

method), 103
_interpolate() (fontParts.base.BaseInfo method),

93
_interpolate() (fontParts.base.BaseKerning

method), 94
_interpolate() (fontParts.base.BaseLayer method),

98
_isCompatible() (fontParts.base.BaseFont method),

92
_isCompatible() (fontParts.base.BaseGlyph

method), 103
_isCompatible() (fontParts.base.BaseLayer

method), 98
_items() (fontParts.base.BaseGroups method), 93
_items() (fontParts.base.BaseKerning method), 94
_items() (fontParts.base.BaseLib method), 96
_iter() (fontParts.base.BaseFont method), 92
_iter() (fontParts.base.BaseGroups method), 94
_iter() (fontParts.base.BaseKerning method), 95
_iter() (fontParts.base.BaseLayer method), 98
_iter() (fontParts.base.BaseLib method), 96
_iterContours() (fontParts.base.BaseGlyph

method), 103
_iterPoints() (fontParts.base.BaseSegment

method), 107
_keys() (fontParts.base.BaseFont method), 92
_keys() (fontParts.base.BaseGroups method), 94
_keys() (fontParts.base.BaseKerning method), 95
_keys() (fontParts.base.BaseLayer method), 97
_keys() (fontParts.base.BaseLib method), 96
_len() (fontParts.base.BaseFont method), 92
_len() (fontParts.base.BaseGroups method), 94
_len() (fontParts.base.BaseKerning method), 95
_len() (fontParts.base.BaseLayer method), 98
_len() (fontParts.base.BaseLib method), 96

_len() (fontParts.base.BaseSegment method), 107
_lenAnchors() (fontParts.base.BaseGlyph method),

100
_lenComponents() (fontParts.base.BaseGlyph

method), 100
_lenContours() (fontParts.base.BaseGlyph

method), 100
_lenGuidelines() (fontParts.base.BaseFont

method), 90
_lenGuidelines() (fontParts.base.BaseGlyph

method), 100
_lenPoints() (fontParts.base.BaseContour method),

104
_len__segments() (fontParts.base.BaseContour

method), 105
_moveBy() (fontParts.base.BaseAnchor method), 113
_moveBy() (fontParts.base.BaseBPoint method), 108
_moveBy() (fontParts.base.BaseComponent method),

112
_moveBy() (fontParts.base.BaseContour method), 105
_moveBy() (fontParts.base.BaseGlyph method), 103
_moveBy() (fontParts.base.BaseGuideline method),

115
_moveBy() (fontParts.base.BaseImage method), 117
_moveBy() (fontParts.base.BasePoint method), 110
_moveBy() (fontParts.base.BaseSegment method), 107
_newGlyph() (fontParts.base.BaseFont method), 92
_newGlyph() (fontParts.base.BaseLayer method), 97
_newLayer() (fontParts.base.BaseFont method), 90
_newLayer() (fontParts.base.BaseGlyph method), 100
_pointInside() (fontParts.base.BaseComponent

method), 112
_pointInside() (fontParts.base.BaseContour

method), 105
_pointInside() (fontParts.base.BaseGlyph

method), 103
_pop() (fontParts.base.BaseGroups method), 94
_pop() (fontParts.base.BaseKerning method), 95
_pop() (fontParts.base.BaseLib method), 96
_removeAnchor() (fontParts.base.BaseGlyph

method), 100
_removeComponent() (fontParts.base.BaseGlyph

method), 100
_removeContour() (fontParts.base.BaseGlyph

method), 100
_removeGlyph() (fontParts.base.BaseFont method),

92
_removeGlyph() (fontParts.base.BaseLayer method),

97
_removeGuideline() (fontParts.base.BaseFont

method), 90
_removeGuideline() (fontParts.base.BaseGlyph

method), 100
_removeLayer() (fontParts.base.BaseFont method),

128 Index

FontParts Documentation, Release 0.1

90
_removeLayer() (fontParts.base.BaseGlyph

method), 103
_removeOverlap() (fontParts.base.BaseGlyph

method), 100
_removePoint() (fontParts.base.BaseContour

method), 105
_removeSegment() (fontParts.base.BaseContour

method), 105
_reverse() (fontParts.base.BaseContour method),

106
_rotateBy() (fontParts.base.BaseAnchor method),

114
_rotateBy() (fontParts.base.BaseBPoint method),

108
_rotateBy() (fontParts.base.BaseComponent

method), 112
_rotateBy() (fontParts.base.BaseContour method),

106
_rotateBy() (fontParts.base.BaseGlyph method), 103
_rotateBy() (fontParts.base.BaseGuideline method),

115
_rotateBy() (fontParts.base.BaseImage method), 117
_rotateBy() (fontParts.base.BasePoint method), 110
_rotateBy() (fontParts.base.BaseSegment method),

107
_round() (fontParts.base.BaseComponent method),

112
_round() (fontParts.base.BaseContour method), 106
_round() (fontParts.base.BaseFont method), 92
_round() (fontParts.base.BaseGlyph method), 103
_round() (fontParts.base.BaseGuideline method), 116
_round() (fontParts.base.BaseImage method), 117
_round() (fontParts.base.BaseInfo method), 93
_round() (fontParts.base.BaseKerning method), 95
_round() (fontParts.base.BaseLayer method), 98
_round() (fontParts.base.BasePoint method), 110
_save() (fontParts.base.BaseFont method), 90
_scale() (fontParts.base.BaseKerning method), 95
_scaleBy() (fontParts.base.BaseAnchor method), 114
_scaleBy() (fontParts.base.BaseBPoint method), 108
_scaleBy() (fontParts.base.BaseComponent method),

112
_scaleBy() (fontParts.base.BaseContour method),

106
_scaleBy() (fontParts.base.BaseGlyph method), 103
_scaleBy() (fontParts.base.BaseGuideline method),

116
_scaleBy() (fontParts.base.BaseImage method), 117
_scaleBy() (fontParts.base.BasePoint method), 110
_scaleBy() (fontParts.base.BaseSegment method),

107
_setAttr() (fontParts.base.BaseInfo method), 93
_setItem() (fontParts.base.BaseGroups method), 93

_setItem() (fontParts.base.BaseKerning method), 94
_setItem() (fontParts.base.BaseLib method), 96
_setStartSegment() (fontParts.base.BaseContour

method), 106
_set_anchor() (fontParts.base.BaseBPoint method),

108
_set_angle() (fontParts.base.BaseGuideline

method), 115
_set_baseGlyph() (fontParts.base.BaseComponent

method), 111
_set_bcpIn() (fontParts.base.BaseBPoint method),

108
_set_bcpOut() (fontParts.base.BaseBPoint method),

108
_set_bottomMargin() (fontParts.base.BaseGlyph

method), 103
_set_clockwise() (fontParts.base.BaseContour

method), 106
_set_color() (fontParts.base.BaseAnchor method),

113
_set_color() (fontParts.base.BaseGuideline

method), 115
_set_color() (fontParts.base.BaseImage method),

116
_set_color() (fontParts.base.BaseLayer method), 97
_set_data() (fontParts.base.BaseImage method), 117
_set_defaultLayer() (fontParts.base.BaseFont

method), 90
_set_glyphOrder() (fontParts.base.BaseFont

method), 91
_set_height() (fontParts.base.BaseGlyph method),

100
_set_index() (fontParts.base.BaseComponent

method), 111
_set_index() (fontParts.base.BaseContour method),

105
_set_layerOrder() (fontParts.base.BaseFont

method), 91
_set_leftMargin() (fontParts.base.BaseGlyph

method), 103
_set_markColor() (fontParts.base.BaseGlyph

method), 100
_set_name() (fontParts.base.BaseAnchor method),

113
_set_name() (fontParts.base.BaseGlyph method), 100
_set_name() (fontParts.base.BaseGuideline method),

115
_set_name() (fontParts.base.BaseLayer method), 97
_set_name() (fontParts.base.BasePoint method), 109
_set_note() (fontParts.base.BaseGlyph method), 101
_set_offset() (fontParts.base.BaseComponent

method), 112
_set_offset() (fontParts.base.BaseImage method),

117

Index 129

FontParts Documentation, Release 0.1

_set_rightMargin() (fontParts.base.BaseGlyph
method), 104

_set_scale() (fontParts.base.BaseComponent
method), 112

_set_scale() (fontParts.base.BaseImage method),
117

_set_smooth() (fontParts.base.BasePoint method),
110

_set_smooth() (fontParts.base.BaseSegment
method), 107

_set_text() (fontParts.base.BaseFeatures method),
95

_set_topMargin() (fontParts.base.BaseGlyph
method), 104

_set_transformation() (font-
Parts.base.BaseComponent method), 111

_set_transformation() (font-
Parts.base.BaseImage method), 117

_set_type() (fontParts.base.BaseBPoint method),
109

_set_type() (fontParts.base.BasePoint method), 110
_set_type() (fontParts.base.BaseSegment method),

107
_set_unicode() (fontParts.base.BaseGlyph

method), 104
_set_unicodes() (fontParts.base.BaseGlyph

method), 101
_set_width() (fontParts.base.BaseGlyph method),

101
_set_x() (fontParts.base.BaseAnchor method), 113
_set_x() (fontParts.base.BaseGuideline method), 115
_set_x() (fontParts.base.BasePoint method), 110
_set_y() (fontParts.base.BaseAnchor method), 113
_set_y() (fontParts.base.BaseGuideline method), 115
_set_y() (fontParts.base.BasePoint method), 110
_skewBy() (fontParts.base.BaseAnchor method), 114
_skewBy() (fontParts.base.BaseBPoint method), 109
_skewBy() (fontParts.base.BaseComponent method),

112
_skewBy() (fontParts.base.BaseContour method), 106
_skewBy() (fontParts.base.BaseGlyph method), 104
_skewBy() (fontParts.base.BaseGuideline method),

116
_skewBy() (fontParts.base.BaseImage method), 117
_skewBy() (fontParts.base.BasePoint method), 111
_skewBy() (fontParts.base.BaseSegment method), 107
_transformBy() (fontParts.base.BaseAnchor

method), 114
_transformBy() (fontParts.base.BaseBPoint

method), 109
_transformBy() (fontParts.base.BaseComponent

method), 112
_transformBy() (fontParts.base.BaseContour

method), 106

_transformBy() (fontParts.base.BaseGlyph
method), 104

_transformBy() (fontParts.base.BaseGuideline
method), 116

_transformBy() (fontParts.base.BaseImage
method), 118

_transformBy() (fontParts.base.BasePoint method),
111

_transformBy() (fontParts.base.BaseSegment
method), 107

_update() (fontParts.base.BaseGroups method), 94
_update() (fontParts.base.BaseKerning method), 95
_update() (fontParts.base.BaseLib method), 96
_values() (fontParts.base.BaseGroups method), 94
_values() (fontParts.base.BaseKerning method), 95
_values() (fontParts.base.BaseLib method), 96

A
addImage() (fontParts.base.BaseGlyph method), 46
AllFonts() (in module fontParts.world), 82
anchor (fontParts.base.BaseBPoint attribute), 60
anchors (fontParts.base.BaseGlyph attribute), 45
angle (fontParts.base.BaseGuideline attribute), 80
appendAnchor() (fontParts.base.BaseGlyph

method), 45
appendBPoint() (fontParts.base.BaseContour

method), 53
appendComponent() (fontParts.base.BaseGlyph

method), 44
appendContour() (fontParts.base.BaseGlyph

method), 43
appendGlyph() (fontParts.base.BaseGlyph method),

42
appendGuideline() (fontParts.base.BaseFont

method), 9
appendGuideline() (fontParts.base.BaseGlyph

method), 45
appendPoint() (fontParts.base.BaseContour

method), 54
appendSegment() (fontParts.base.BaseContour

method), 53
autoStartSegment() (fontParts.base.BaseContour

method), 53
autoUnicodes() (fontParts.base.BaseFont method),

11
autoUnicodes() (fontParts.base.BaseGlyph

method), 49
autoUnicodes() (fontParts.base.BaseLayer method),

32

B
BaseAnchor (class in fontParts.base), 71
BaseBPoint (class in fontParts.base), 60
BaseComponent (class in fontParts.base), 68

130 Index

FontParts Documentation, Release 0.1

BaseContour (class in fontParts.base), 52
BaseFeatures (class in fontParts.base), 24
BaseFont (class in fontParts.base), 5
BaseFontList (class in fontParts.world), 85
BaseGlyph (class in fontParts.base), 38
baseGlyph (fontParts.base.BaseComponent attribute),

68
BaseGroups (class in fontParts.base), 15
BaseGuideline (class in fontParts.base), 78
BaseImage (class in fontParts.base), 75
BaseInfo (class in fontParts.base), 11
BaseKerning (class in fontParts.base), 20
BaseLayer (class in fontParts.base), 29
BaseLib (class in fontParts.base), 25
BaseSegment (class in fontParts.base), 56
bcpIn (fontParts.base.BaseBPoint attribute), 60
bcpOut (fontParts.base.BaseBPoint attribute), 60
bottomMargin (fontParts.base.BaseGlyph attribute),

40
bounds (fontParts.base.BaseComponent attribute), 69
bounds (fontParts.base.BaseContour attribute), 53
bounds (fontParts.base.BaseGlyph attribute), 41
bPoints (fontParts.base.BaseContour attribute), 53

C
changed() (fontParts.base.BaseAnchor method), 74
changed() (fontParts.base.BaseBPoint method), 62
changed() (fontParts.base.BaseComponent method),

70
changed() (fontParts.base.BaseContour method), 55
changed() (fontParts.base.BaseFont method), 11
changed() (fontParts.base.BaseGlyph method), 49
changed() (fontParts.base.BaseGroups method), 18
changed() (fontParts.base.BaseGuideline method), 81
changed() (fontParts.base.BaseImage method), 77
changed() (fontParts.base.BaseInfo method), 14
changed() (fontParts.base.BaseKerning method), 23
changed() (fontParts.base.BaseLayer method), 32
changed() (fontParts.base.BaseLib method), 27
changed() (fontParts.base.BasePoint method), 66
changed() (fontParts.base.BaseSegment method), 58
clear() (fontParts.base.BaseGlyph method), 42
clear() (fontParts.base.BaseGroups method), 17
clear() (fontParts.base.BaseKerning method), 22
clear() (fontParts.base.BaseLib method), 27
clearAnchors() (fontParts.base.BaseGlyph

method), 45
clearComponents() (fontParts.base.BaseGlyph

method), 44
clearContours() (fontParts.base.BaseGlyph

method), 44
clearGuidelines() (fontParts.base.BaseFont

method), 10

clearGuidelines() (fontParts.base.BaseGlyph
method), 46

clearImage() (fontParts.base.BaseGlyph method),
47

clockwise (fontParts.base.BaseContour attribute), 52
close() (fontParts.base.BaseFont method), 6
color (fontParts.base.BaseAnchor attribute), 72
color (fontParts.base.BaseGuideline attribute), 79
color (fontParts.base.BaseImage attribute), 75
color (fontParts.base.BaseLayer attribute), 30
components (fontParts.base.BaseGlyph attribute), 44
contour (fontParts.base.BaseBPoint attribute), 60
contour (fontParts.base.BasePoint attribute), 63
contour (fontParts.base.BaseSegment attribute), 56
contours (fontParts.base.BaseGlyph attribute), 43
copy() (fontParts.base.BaseAnchor method), 72
copy() (fontParts.base.BaseComponent method), 68
copy() (fontParts.base.BaseContour method), 52
copy() (fontParts.base.BaseFeatures method), 24
copy() (fontParts.base.BaseFont method), 5
copy() (fontParts.base.BaseGlyph method), 38
copy() (fontParts.base.BaseGroups method), 16
copy() (fontParts.base.BaseGuideline method), 79
copy() (fontParts.base.BaseImage method), 75
copy() (fontParts.base.BaseInfo method), 12
copy() (fontParts.base.BaseKerning method), 20
copy() (fontParts.base.BaseLayer method), 29
copy() (fontParts.base.BaseLib method), 25
copy() (fontParts.base.BasePoint method), 63
copyData() (fontParts.base.BaseAnchor method), 114
copyData() (fontParts.base.BaseBPoint method), 109
copyData() (fontParts.base.BaseComponent method),

112
copyData() (fontParts.base.BaseFeatures method), 95
copyData() (fontParts.base.BaseGuideline method),

116
copyData() (fontParts.base.BaseImage method), 118
copyData() (fontParts.base.BaseInfo method), 93
copyData() (fontParts.base.BasePoint method), 111
copyData() (fontParts.base.BaseSegment method),

108
CurrentAnchors() (in module fontParts.world), 84
CurrentComponents() (in module fontParts.world),

84
CurrentContours() (in module fontParts.world), 84
CurrentFont() (in module fontParts.world), 83
CurrentGlyph() (in module fontParts.world), 84
CurrentGuidelines() (in module fontParts.world),

84
CurrentLayer() (in module fontParts.world), 83
CurrentPoints() (in module fontParts.world), 84
CurrentSegments() (in module fontParts.world), 84

Index 131

FontParts Documentation, Release 0.1

D
data (fontParts.base.BaseImage attribute), 75
decompose() (fontParts.base.BaseComponent

method), 70
decompose() (fontParts.base.BaseGlyph method), 45
defaultLayer (fontParts.base.BaseFont attribute), 7
draw() (fontParts.base.BaseComponent method), 69
draw() (fontParts.base.BaseContour method), 53
draw() (fontParts.base.BaseGlyph method), 41
drawPoints() (fontParts.base.BaseComponent

method), 69
drawPoints() (fontParts.base.BaseContour method),

53
drawPoints() (fontParts.base.BaseGlyph method),

41

F
features (fontParts.base.BaseFont attribute), 7
find() (fontParts.base.BaseKerning method), 21
findGlyph() (fontParts.base.BaseGroups method), 18
font (fontParts.base.BaseAnchor attribute), 72
font (fontParts.base.BaseBPoint attribute), 60
font (fontParts.base.BaseComponent attribute), 68
font (fontParts.base.BaseContour attribute), 52
font (fontParts.base.BaseFeatures attribute), 24
font (fontParts.base.BaseGlyph attribute), 39
font (fontParts.base.BaseGuideline attribute), 79
font (fontParts.base.BaseImage attribute), 75
font (fontParts.base.BaseInfo attribute), 12
font (fontParts.base.BaseKerning attribute), 20
font (fontParts.base.BaseLayer attribute), 29
font (fontParts.base.BaseLib attribute), 25
font (fontParts.base.BasePoint attribute), 63
font (fontParts.base.BaseSegment attribute), 57
FontList() (in module fontParts.world), 85
fontParts.base (module), 3, 11, 14, 18, 23, 24, 27,

32, 50, 55, 58, 62, 66, 70, 74, 77, 88, 92–96, 98,
104, 106, 108, 109, 111, 112, 114, 116

fontParts.world (module), 82

G
generate() (fontParts.base.BaseFont method), 6
get() (fontParts.base.BaseGroups method), 17
get() (fontParts.base.BaseKerning method), 21
get() (fontParts.base.BaseLib method), 26
getLayer() (fontParts.base.BaseFont method), 7
getLayer() (fontParts.base.BaseGlyph method), 42
getPen() (fontParts.base.BaseGlyph method), 41
getPointPen() (fontParts.base.BaseGlyph method),

41
glyph (fontParts.base.BaseAnchor attribute), 72
glyph (fontParts.base.BaseBPoint attribute), 60
glyph (fontParts.base.BaseComponent attribute), 68
glyph (fontParts.base.BaseContour attribute), 52

glyph (fontParts.base.BaseGuideline attribute), 79
glyph (fontParts.base.BaseImage attribute), 75
glyph (fontParts.base.BaseLib attribute), 25
glyph (fontParts.base.BasePoint attribute), 63
glyph (fontParts.base.BaseSegment attribute), 56
glyphOrder (fontParts.base.BaseFont attribute), 8
groups (fontParts.base.BaseFont attribute), 6
guidelines (fontParts.base.BaseFont attribute), 9
guidelines (fontParts.base.BaseGlyph attribute), 45

H
height (fontParts.base.BaseGlyph attribute), 40

I
identifier (fontParts.base.BaseAnchor attribute), 72
identifier (fontParts.base.BaseComponent at-

tribute), 68
identifier (fontParts.base.BaseContour attribute),

52
identifier (fontParts.base.BaseGuideline attribute),

79
identifier (fontParts.base.BasePoint attribute), 64
image (fontParts.base.BaseGlyph attribute), 46
index (fontParts.base.BaseAnchor attribute), 72
index (fontParts.base.BaseBPoint attribute), 60
index (fontParts.base.BaseComponent attribute), 68
index (fontParts.base.BaseContour attribute), 52
index (fontParts.base.BaseGuideline attribute), 79
index (fontParts.base.BasePoint attribute), 64
index (fontParts.base.BaseSegment attribute), 57
info (fontParts.base.BaseFont attribute), 6
insertBPoint() (fontParts.base.BaseContour

method), 54
insertGlyph() (fontParts.base.BaseFont method), 9
insertGlyph() (fontParts.base.BaseLayer method),

31
insertLayer() (fontParts.base.BaseFont method), 8
insertPoint() (fontParts.base.BaseContour

method), 54
insertSegment() (fontParts.base.BaseContour

method), 53
interpolate() (fontParts.base.BaseFont method), 10
interpolate() (fontParts.base.BaseGlyph method),

48
interpolate() (fontParts.base.BaseInfo method), 12
interpolate() (fontParts.base.BaseKerning

method), 23
interpolate() (fontParts.base.BaseLayer method),

31
isCompatible() (fontParts.base.BaseFont method),

10
isCompatible() (fontParts.base.BaseGlyph

method), 48

132 Index

FontParts Documentation, Release 0.1

isCompatible() (fontParts.base.BaseLayer method),
31

items() (fontParts.base.BaseGroups method), 17
items() (fontParts.base.BaseKerning method), 20
items() (fontParts.base.BaseLib method), 26

K
kerning (fontParts.base.BaseFont attribute), 6
keys() (fontParts.base.BaseFont method), 8
keys() (fontParts.base.BaseGroups method), 17
keys() (fontParts.base.BaseKerning method), 20
keys() (fontParts.base.BaseLayer method), 30
keys() (fontParts.base.BaseLib method), 26

L
layer (fontParts.base.BaseAnchor attribute), 72
layer (fontParts.base.BaseBPoint attribute), 60
layer (fontParts.base.BaseComponent attribute), 68
layer (fontParts.base.BaseContour attribute), 52
layer (fontParts.base.BaseGlyph attribute), 39
layer (fontParts.base.BaseGuideline attribute), 79
layer (fontParts.base.BaseImage attribute), 75
layer (fontParts.base.BasePoint attribute), 63
layer (fontParts.base.BaseSegment attribute), 57
layerOrder (fontParts.base.BaseFont attribute), 7
layers (fontParts.base.BaseFont attribute), 7
layers (fontParts.base.BaseGlyph attribute), 42
leftMargin (fontParts.base.BaseGlyph attribute), 40
lib (fontParts.base.BaseFont attribute), 7
lib (fontParts.base.BaseGlyph attribute), 47
lib (fontParts.base.BaseLayer attribute), 30

M
markColor (fontParts.base.BaseGlyph attribute), 47
moveBy() (fontParts.base.BaseAnchor method), 73
moveBy() (fontParts.base.BaseBPoint method), 61
moveBy() (fontParts.base.BaseComponent method), 69
moveBy() (fontParts.base.BaseContour method), 54
moveBy() (fontParts.base.BaseGlyph method), 47
moveBy() (fontParts.base.BaseGuideline method), 80
moveBy() (fontParts.base.BaseImage method), 76
moveBy() (fontParts.base.BasePoint method), 65
moveBy() (fontParts.base.BaseSegment method), 57

N
naked() (fontParts.base.BaseAnchor method), 74
naked() (fontParts.base.BaseBPoint method), 62
naked() (fontParts.base.BaseComponent method), 70
naked() (fontParts.base.BaseContour method), 55
naked() (fontParts.base.BaseFont method), 11
naked() (fontParts.base.BaseGlyph method), 49
naked() (fontParts.base.BaseGroups method), 18
naked() (fontParts.base.BaseGuideline method), 81

naked() (fontParts.base.BaseImage method), 77
naked() (fontParts.base.BaseInfo method), 14
naked() (fontParts.base.BaseKerning method), 23
naked() (fontParts.base.BaseLayer method), 32
naked() (fontParts.base.BaseLib method), 27
naked() (fontParts.base.BasePoint method), 66
naked() (fontParts.base.BaseSegment method), 58
name (fontParts.base.BaseAnchor attribute), 72
name (fontParts.base.BaseGlyph attribute), 39
name (fontParts.base.BaseGuideline attribute), 79
name (fontParts.base.BaseLayer attribute), 29
name (fontParts.base.BasePoint attribute), 64
NewFont() (in module fontParts.world), 83
newGlyph() (fontParts.base.BaseFont method), 9
newGlyph() (fontParts.base.BaseLayer method), 31
newLayer() (fontParts.base.BaseFont method), 7
newLayer() (fontParts.base.BaseGlyph method), 42
note (fontParts.base.BaseGlyph attribute), 47

O
offCurve (fontParts.base.BaseSegment attribute), 57
offset (fontParts.base.BaseComponent attribute), 68
offset (fontParts.base.BaseImage attribute), 75
onCurve (fontParts.base.BaseSegment attribute), 57
OpenFont() (in module fontParts.world), 83
OpenFonts() (in module fontParts.world), 83

P
path (fontParts.base.BaseFont attribute), 5
pointInside() (fontParts.base.BaseComponent

method), 69
pointInside() (fontParts.base.BaseContour

method), 53
pointInside() (fontParts.base.BaseGlyph method),

41
points (fontParts.base.BaseContour attribute), 54
points (fontParts.base.BaseSegment attribute), 57
pop() (fontParts.base.BaseGroups method), 17
pop() (fontParts.base.BaseKerning method), 22
pop() (fontParts.base.BaseLib method), 27

R
removeAnchor() (fontParts.base.BaseGlyph

method), 45
removeComponent() (fontParts.base.BaseGlyph

method), 44
removeContour() (fontParts.base.BaseGlyph

method), 44
removeGlyph() (fontParts.base.BaseFont method), 9
removeGlyph() (fontParts.base.BaseLayer method),

31
removeGuideline() (fontParts.base.BaseFont

method), 10

Index 133

FontParts Documentation, Release 0.1

removeGuideline() (fontParts.base.BaseGlyph
method), 46

removeLayer() (fontParts.base.BaseFont method), 7
removeLayer() (fontParts.base.BaseGlyph method),

42
removeOverlap() (fontParts.base.BaseGlyph

method), 44
removePoint() (fontParts.base.BaseContour

method), 54
removeSegment() (fontParts.base.BaseContour

method), 53
reverse() (fontParts.base.BaseContour method), 52
rightMargin (fontParts.base.BaseGlyph attribute), 40
rotateBy() (fontParts.base.BaseAnchor method), 73
rotateBy() (fontParts.base.BaseBPoint method), 61
rotateBy() (fontParts.base.BaseComponent method),

69
rotateBy() (fontParts.base.BaseContour method), 54
rotateBy() (fontParts.base.BaseGlyph method), 48
rotateBy() (fontParts.base.BaseGuideline method),

80
rotateBy() (fontParts.base.BaseImage method), 76
rotateBy() (fontParts.base.BasePoint method), 65
rotateBy() (fontParts.base.BaseSegment method), 58
round() (fontParts.base.BaseAnchor method), 74
round() (fontParts.base.BaseBPoint method), 61
round() (fontParts.base.BaseComponent method), 70
round() (fontParts.base.BaseContour method), 55
round() (fontParts.base.BaseFont method), 10
round() (fontParts.base.BaseGlyph method), 49
round() (fontParts.base.BaseGuideline method), 81
round() (fontParts.base.BaseImage method), 77
round() (fontParts.base.BaseInfo method), 12
round() (fontParts.base.BaseKerning method), 23
round() (fontParts.base.BaseLayer method), 32
round() (fontParts.base.BasePoint method), 66
round() (fontParts.base.BaseSegment method), 58

S
save() (fontParts.base.BaseFont method), 5
scale (fontParts.base.BaseComponent attribute), 68
scale (fontParts.base.BaseImage attribute), 75
scaleBy() (fontParts.base.BaseAnchor method), 73
scaleBy() (fontParts.base.BaseBPoint method), 61
scaleBy() (fontParts.base.BaseComponent method),

69
scaleBy() (fontParts.base.BaseContour method), 54
scaleBy() (fontParts.base.BaseGlyph method), 48
scaleBy() (fontParts.base.BaseGuideline method), 80
scaleBy() (fontParts.base.BaseImage method), 76
scaleBy() (fontParts.base.BaseKerning method), 22
scaleBy() (fontParts.base.BasePoint method), 65
scaleBy() (fontParts.base.BaseSegment method), 57
segments (fontParts.base.BaseContour attribute), 53

setStartSegment() (fontParts.base.BaseContour
method), 53

skewBy() (fontParts.base.BaseAnchor method), 73
skewBy() (fontParts.base.BaseBPoint method), 61
skewBy() (fontParts.base.BaseComponent method), 69
skewBy() (fontParts.base.BaseContour method), 55
skewBy() (fontParts.base.BaseGlyph method), 48
skewBy() (fontParts.base.BaseGuideline method), 80
skewBy() (fontParts.base.BaseImage method), 76
skewBy() (fontParts.base.BasePoint method), 65
skewBy() (fontParts.base.BaseSegment method), 58
smooth (fontParts.base.BasePoint attribute), 65
smooth (fontParts.base.BaseSegment attribute), 57

T
text (fontParts.base.BaseFeatures attribute), 24
topMargin (fontParts.base.BaseGlyph attribute), 40
transformation (fontParts.base.BaseComponent at-

tribute), 68
transformation (fontParts.base.BaseImage at-

tribute), 75
transformBy() (fontParts.base.BaseAnchor method),

73
transformBy() (fontParts.base.BaseBPoint method),

61
transformBy() (fontParts.base.BaseComponent

method), 69
transformBy() (fontParts.base.BaseContour

method), 54
transformBy() (fontParts.base.BaseGlyph method),

47
transformBy() (fontParts.base.BaseGuideline

method), 80
transformBy() (fontParts.base.BaseImage method),

76
transformBy() (fontParts.base.BasePoint method),

65
transformBy() (fontParts.base.BaseSegment

method), 57
type (fontParts.base.BaseBPoint attribute), 60
type (fontParts.base.BasePoint attribute), 64
type (fontParts.base.BaseSegment attribute), 57

U
unicode (fontParts.base.BaseGlyph attribute), 39
unicodes (fontParts.base.BaseGlyph attribute), 39
update() (fontParts.base.BaseGroups method), 17
update() (fontParts.base.BaseInfo method), 14
update() (fontParts.base.BaseKerning method), 22
update() (fontParts.base.BaseLib method), 27

V
values() (fontParts.base.BaseGroups method), 18
values() (fontParts.base.BaseKerning method), 21

134 Index

FontParts Documentation, Release 0.1

values() (fontParts.base.BaseLib method), 26

W
width (fontParts.base.BaseGlyph attribute), 40

X
x (fontParts.base.BaseAnchor attribute), 72
x (fontParts.base.BaseGuideline attribute), 79
x (fontParts.base.BasePoint attribute), 64

Y
y (fontParts.base.BaseAnchor attribute), 73
y (fontParts.base.BaseGuideline attribute), 79
y (fontParts.base.BasePoint attribute), 64

Index 135

	Getting Started
	Object Reference
	Objects
	Common Value Types
	fontParts.world

	Developers
	Implementing FontParts
	Developing FontParts

	Python Module Index
	Index

